Solve for x
x=\frac{2\left(\sqrt{61}-40\right)}{81}\approx -0.79480865
Graph
Share
Copied to clipboard
\left(9\left(x+1\right)\right)^{2}=\left(\sqrt{2x+5}\right)^{2}
Square both sides of the equation.
\left(9x+9\right)^{2}=\left(\sqrt{2x+5}\right)^{2}
Use the distributive property to multiply 9 by x+1.
81x^{2}+162x+81=\left(\sqrt{2x+5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9x+9\right)^{2}.
81x^{2}+162x+81=2x+5
Calculate \sqrt{2x+5} to the power of 2 and get 2x+5.
81x^{2}+162x+81-2x=5
Subtract 2x from both sides.
81x^{2}+160x+81=5
Combine 162x and -2x to get 160x.
81x^{2}+160x+81-5=0
Subtract 5 from both sides.
81x^{2}+160x+76=0
Subtract 5 from 81 to get 76.
x=\frac{-160±\sqrt{160^{2}-4\times 81\times 76}}{2\times 81}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 81 for a, 160 for b, and 76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-160±\sqrt{25600-4\times 81\times 76}}{2\times 81}
Square 160.
x=\frac{-160±\sqrt{25600-324\times 76}}{2\times 81}
Multiply -4 times 81.
x=\frac{-160±\sqrt{25600-24624}}{2\times 81}
Multiply -324 times 76.
x=\frac{-160±\sqrt{976}}{2\times 81}
Add 25600 to -24624.
x=\frac{-160±4\sqrt{61}}{2\times 81}
Take the square root of 976.
x=\frac{-160±4\sqrt{61}}{162}
Multiply 2 times 81.
x=\frac{4\sqrt{61}-160}{162}
Now solve the equation x=\frac{-160±4\sqrt{61}}{162} when ± is plus. Add -160 to 4\sqrt{61}.
x=\frac{2\sqrt{61}-80}{81}
Divide -160+4\sqrt{61} by 162.
x=\frac{-4\sqrt{61}-160}{162}
Now solve the equation x=\frac{-160±4\sqrt{61}}{162} when ± is minus. Subtract 4\sqrt{61} from -160.
x=\frac{-2\sqrt{61}-80}{81}
Divide -160-4\sqrt{61} by 162.
x=\frac{2\sqrt{61}-80}{81} x=\frac{-2\sqrt{61}-80}{81}
The equation is now solved.
9\left(\frac{2\sqrt{61}-80}{81}+1\right)=\sqrt{2\times \frac{2\sqrt{61}-80}{81}+5}
Substitute \frac{2\sqrt{61}-80}{81} for x in the equation 9\left(x+1\right)=\sqrt{2x+5}.
\frac{2}{9}\times 61^{\frac{1}{2}}+\frac{1}{9}=\frac{2}{9}\times 61^{\frac{1}{2}}+\frac{1}{9}
Simplify. The value x=\frac{2\sqrt{61}-80}{81} satisfies the equation.
9\left(\frac{-2\sqrt{61}-80}{81}+1\right)=\sqrt{2\times \frac{-2\sqrt{61}-80}{81}+5}
Substitute \frac{-2\sqrt{61}-80}{81} for x in the equation 9\left(x+1\right)=\sqrt{2x+5}.
-\frac{2}{9}\times 61^{\frac{1}{2}}+\frac{1}{9}=\frac{2}{9}\times 61^{\frac{1}{2}}-\frac{1}{9}
Simplify. The value x=\frac{-2\sqrt{61}-80}{81} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{2\sqrt{61}-80}{81}
Equation 9\left(x+1\right)=\sqrt{2x+5} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}