Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

9\times \frac{12}{7}c\left(\frac{2}{3}c+\frac{11}{4}c\right)\left(c+\frac{1}{6}c\right)
Combine 3c and -\frac{9}{7}c to get \frac{12}{7}c.
\frac{9\times 12}{7}c\left(\frac{2}{3}c+\frac{11}{4}c\right)\left(c+\frac{1}{6}c\right)
Express 9\times \frac{12}{7} as a single fraction.
\frac{108}{7}c\left(\frac{2}{3}c+\frac{11}{4}c\right)\left(c+\frac{1}{6}c\right)
Multiply 9 and 12 to get 108.
\frac{108}{7}c\times \frac{41}{12}c\left(c+\frac{1}{6}c\right)
Combine \frac{2}{3}c and \frac{11}{4}c to get \frac{41}{12}c.
\frac{108\times 41}{7\times 12}cc\left(c+\frac{1}{6}c\right)
Multiply \frac{108}{7} times \frac{41}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{4428}{84}cc\left(c+\frac{1}{6}c\right)
Do the multiplications in the fraction \frac{108\times 41}{7\times 12}.
\frac{369}{7}cc\left(c+\frac{1}{6}c\right)
Reduce the fraction \frac{4428}{84} to lowest terms by extracting and canceling out 12.
\frac{369}{7}c^{2}\left(c+\frac{1}{6}c\right)
Multiply c and c to get c^{2}.
\frac{369}{7}c^{2}\times \frac{7}{6}c
Combine c and \frac{1}{6}c to get \frac{7}{6}c.
\frac{369\times 7}{7\times 6}c^{2}c
Multiply \frac{369}{7} times \frac{7}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{369}{6}c^{2}c
Cancel out 7 in both numerator and denominator.
\frac{123}{2}c^{2}c
Reduce the fraction \frac{369}{6} to lowest terms by extracting and canceling out 3.
\frac{123}{2}c^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
9\times \frac{12}{7}c\left(\frac{2}{3}c+\frac{11}{4}c\right)\left(c+\frac{1}{6}c\right)
Combine 3c and -\frac{9}{7}c to get \frac{12}{7}c.
\frac{9\times 12}{7}c\left(\frac{2}{3}c+\frac{11}{4}c\right)\left(c+\frac{1}{6}c\right)
Express 9\times \frac{12}{7} as a single fraction.
\frac{108}{7}c\left(\frac{2}{3}c+\frac{11}{4}c\right)\left(c+\frac{1}{6}c\right)
Multiply 9 and 12 to get 108.
\frac{108}{7}c\times \frac{41}{12}c\left(c+\frac{1}{6}c\right)
Combine \frac{2}{3}c and \frac{11}{4}c to get \frac{41}{12}c.
\frac{108\times 41}{7\times 12}cc\left(c+\frac{1}{6}c\right)
Multiply \frac{108}{7} times \frac{41}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{4428}{84}cc\left(c+\frac{1}{6}c\right)
Do the multiplications in the fraction \frac{108\times 41}{7\times 12}.
\frac{369}{7}cc\left(c+\frac{1}{6}c\right)
Reduce the fraction \frac{4428}{84} to lowest terms by extracting and canceling out 12.
\frac{369}{7}c^{2}\left(c+\frac{1}{6}c\right)
Multiply c and c to get c^{2}.
\frac{369}{7}c^{2}\times \frac{7}{6}c
Combine c and \frac{1}{6}c to get \frac{7}{6}c.
\frac{369\times 7}{7\times 6}c^{2}c
Multiply \frac{369}{7} times \frac{7}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{369}{6}c^{2}c
Cancel out 7 in both numerator and denominator.
\frac{123}{2}c^{2}c
Reduce the fraction \frac{369}{6} to lowest terms by extracting and canceling out 3.
\frac{123}{2}c^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.