Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9\left(4x^{2}-4x+1\right)-16\left(3x+1\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
36x^{2}-36x+9-16\left(3x+1\right)^{2}=0
Use the distributive property to multiply 9 by 4x^{2}-4x+1.
36x^{2}-36x+9-16\left(9x^{2}+6x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
36x^{2}-36x+9-144x^{2}-96x-16=0
Use the distributive property to multiply -16 by 9x^{2}+6x+1.
-108x^{2}-36x+9-96x-16=0
Combine 36x^{2} and -144x^{2} to get -108x^{2}.
-108x^{2}-132x+9-16=0
Combine -36x and -96x to get -132x.
-108x^{2}-132x-7=0
Subtract 16 from 9 to get -7.
a+b=-132 ab=-108\left(-7\right)=756
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -108x^{2}+ax+bx-7. To find a and b, set up a system to be solved.
-1,-756 -2,-378 -3,-252 -4,-189 -6,-126 -7,-108 -9,-84 -12,-63 -14,-54 -18,-42 -21,-36 -27,-28
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 756.
-1-756=-757 -2-378=-380 -3-252=-255 -4-189=-193 -6-126=-132 -7-108=-115 -9-84=-93 -12-63=-75 -14-54=-68 -18-42=-60 -21-36=-57 -27-28=-55
Calculate the sum for each pair.
a=-6 b=-126
The solution is the pair that gives sum -132.
\left(-108x^{2}-6x\right)+\left(-126x-7\right)
Rewrite -108x^{2}-132x-7 as \left(-108x^{2}-6x\right)+\left(-126x-7\right).
6x\left(-18x-1\right)+7\left(-18x-1\right)
Factor out 6x in the first and 7 in the second group.
\left(-18x-1\right)\left(6x+7\right)
Factor out common term -18x-1 by using distributive property.
x=-\frac{1}{18} x=-\frac{7}{6}
To find equation solutions, solve -18x-1=0 and 6x+7=0.
9\left(4x^{2}-4x+1\right)-16\left(3x+1\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
36x^{2}-36x+9-16\left(3x+1\right)^{2}=0
Use the distributive property to multiply 9 by 4x^{2}-4x+1.
36x^{2}-36x+9-16\left(9x^{2}+6x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
36x^{2}-36x+9-144x^{2}-96x-16=0
Use the distributive property to multiply -16 by 9x^{2}+6x+1.
-108x^{2}-36x+9-96x-16=0
Combine 36x^{2} and -144x^{2} to get -108x^{2}.
-108x^{2}-132x+9-16=0
Combine -36x and -96x to get -132x.
-108x^{2}-132x-7=0
Subtract 16 from 9 to get -7.
x=\frac{-\left(-132\right)±\sqrt{\left(-132\right)^{2}-4\left(-108\right)\left(-7\right)}}{2\left(-108\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -108 for a, -132 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-132\right)±\sqrt{17424-4\left(-108\right)\left(-7\right)}}{2\left(-108\right)}
Square -132.
x=\frac{-\left(-132\right)±\sqrt{17424+432\left(-7\right)}}{2\left(-108\right)}
Multiply -4 times -108.
x=\frac{-\left(-132\right)±\sqrt{17424-3024}}{2\left(-108\right)}
Multiply 432 times -7.
x=\frac{-\left(-132\right)±\sqrt{14400}}{2\left(-108\right)}
Add 17424 to -3024.
x=\frac{-\left(-132\right)±120}{2\left(-108\right)}
Take the square root of 14400.
x=\frac{132±120}{2\left(-108\right)}
The opposite of -132 is 132.
x=\frac{132±120}{-216}
Multiply 2 times -108.
x=\frac{252}{-216}
Now solve the equation x=\frac{132±120}{-216} when ± is plus. Add 132 to 120.
x=-\frac{7}{6}
Reduce the fraction \frac{252}{-216} to lowest terms by extracting and canceling out 36.
x=\frac{12}{-216}
Now solve the equation x=\frac{132±120}{-216} when ± is minus. Subtract 120 from 132.
x=-\frac{1}{18}
Reduce the fraction \frac{12}{-216} to lowest terms by extracting and canceling out 12.
x=-\frac{7}{6} x=-\frac{1}{18}
The equation is now solved.
9\left(4x^{2}-4x+1\right)-16\left(3x+1\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
36x^{2}-36x+9-16\left(3x+1\right)^{2}=0
Use the distributive property to multiply 9 by 4x^{2}-4x+1.
36x^{2}-36x+9-16\left(9x^{2}+6x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
36x^{2}-36x+9-144x^{2}-96x-16=0
Use the distributive property to multiply -16 by 9x^{2}+6x+1.
-108x^{2}-36x+9-96x-16=0
Combine 36x^{2} and -144x^{2} to get -108x^{2}.
-108x^{2}-132x+9-16=0
Combine -36x and -96x to get -132x.
-108x^{2}-132x-7=0
Subtract 16 from 9 to get -7.
-108x^{2}-132x=7
Add 7 to both sides. Anything plus zero gives itself.
\frac{-108x^{2}-132x}{-108}=\frac{7}{-108}
Divide both sides by -108.
x^{2}+\left(-\frac{132}{-108}\right)x=\frac{7}{-108}
Dividing by -108 undoes the multiplication by -108.
x^{2}+\frac{11}{9}x=\frac{7}{-108}
Reduce the fraction \frac{-132}{-108} to lowest terms by extracting and canceling out 12.
x^{2}+\frac{11}{9}x=-\frac{7}{108}
Divide 7 by -108.
x^{2}+\frac{11}{9}x+\left(\frac{11}{18}\right)^{2}=-\frac{7}{108}+\left(\frac{11}{18}\right)^{2}
Divide \frac{11}{9}, the coefficient of the x term, by 2 to get \frac{11}{18}. Then add the square of \frac{11}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{9}x+\frac{121}{324}=-\frac{7}{108}+\frac{121}{324}
Square \frac{11}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{9}x+\frac{121}{324}=\frac{25}{81}
Add -\frac{7}{108} to \frac{121}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{18}\right)^{2}=\frac{25}{81}
Factor x^{2}+\frac{11}{9}x+\frac{121}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{18}\right)^{2}}=\sqrt{\frac{25}{81}}
Take the square root of both sides of the equation.
x+\frac{11}{18}=\frac{5}{9} x+\frac{11}{18}=-\frac{5}{9}
Simplify.
x=-\frac{1}{18} x=-\frac{7}{6}
Subtract \frac{11}{18} from both sides of the equation.