Solve for x
x = -\frac{19}{2} = -9\frac{1}{2} = -9.5
x=\frac{1}{10}=0.1
Graph
Share
Copied to clipboard
9\left(4x^{2}+12x+9\right)-4\left(2x-5\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
36x^{2}+108x+81-4\left(2x-5\right)^{2}=0
Use the distributive property to multiply 9 by 4x^{2}+12x+9.
36x^{2}+108x+81-4\left(4x^{2}-20x+25\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
36x^{2}+108x+81-16x^{2}+80x-100=0
Use the distributive property to multiply -4 by 4x^{2}-20x+25.
20x^{2}+108x+81+80x-100=0
Combine 36x^{2} and -16x^{2} to get 20x^{2}.
20x^{2}+188x+81-100=0
Combine 108x and 80x to get 188x.
20x^{2}+188x-19=0
Subtract 100 from 81 to get -19.
a+b=188 ab=20\left(-19\right)=-380
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 20x^{2}+ax+bx-19. To find a and b, set up a system to be solved.
-1,380 -2,190 -4,95 -5,76 -10,38 -19,20
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -380.
-1+380=379 -2+190=188 -4+95=91 -5+76=71 -10+38=28 -19+20=1
Calculate the sum for each pair.
a=-2 b=190
The solution is the pair that gives sum 188.
\left(20x^{2}-2x\right)+\left(190x-19\right)
Rewrite 20x^{2}+188x-19 as \left(20x^{2}-2x\right)+\left(190x-19\right).
2x\left(10x-1\right)+19\left(10x-1\right)
Factor out 2x in the first and 19 in the second group.
\left(10x-1\right)\left(2x+19\right)
Factor out common term 10x-1 by using distributive property.
x=\frac{1}{10} x=-\frac{19}{2}
To find equation solutions, solve 10x-1=0 and 2x+19=0.
9\left(4x^{2}+12x+9\right)-4\left(2x-5\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
36x^{2}+108x+81-4\left(2x-5\right)^{2}=0
Use the distributive property to multiply 9 by 4x^{2}+12x+9.
36x^{2}+108x+81-4\left(4x^{2}-20x+25\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
36x^{2}+108x+81-16x^{2}+80x-100=0
Use the distributive property to multiply -4 by 4x^{2}-20x+25.
20x^{2}+108x+81+80x-100=0
Combine 36x^{2} and -16x^{2} to get 20x^{2}.
20x^{2}+188x+81-100=0
Combine 108x and 80x to get 188x.
20x^{2}+188x-19=0
Subtract 100 from 81 to get -19.
x=\frac{-188±\sqrt{188^{2}-4\times 20\left(-19\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 188 for b, and -19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-188±\sqrt{35344-4\times 20\left(-19\right)}}{2\times 20}
Square 188.
x=\frac{-188±\sqrt{35344-80\left(-19\right)}}{2\times 20}
Multiply -4 times 20.
x=\frac{-188±\sqrt{35344+1520}}{2\times 20}
Multiply -80 times -19.
x=\frac{-188±\sqrt{36864}}{2\times 20}
Add 35344 to 1520.
x=\frac{-188±192}{2\times 20}
Take the square root of 36864.
x=\frac{-188±192}{40}
Multiply 2 times 20.
x=\frac{4}{40}
Now solve the equation x=\frac{-188±192}{40} when ± is plus. Add -188 to 192.
x=\frac{1}{10}
Reduce the fraction \frac{4}{40} to lowest terms by extracting and canceling out 4.
x=-\frac{380}{40}
Now solve the equation x=\frac{-188±192}{40} when ± is minus. Subtract 192 from -188.
x=-\frac{19}{2}
Reduce the fraction \frac{-380}{40} to lowest terms by extracting and canceling out 20.
x=\frac{1}{10} x=-\frac{19}{2}
The equation is now solved.
9\left(4x^{2}+12x+9\right)-4\left(2x-5\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
36x^{2}+108x+81-4\left(2x-5\right)^{2}=0
Use the distributive property to multiply 9 by 4x^{2}+12x+9.
36x^{2}+108x+81-4\left(4x^{2}-20x+25\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
36x^{2}+108x+81-16x^{2}+80x-100=0
Use the distributive property to multiply -4 by 4x^{2}-20x+25.
20x^{2}+108x+81+80x-100=0
Combine 36x^{2} and -16x^{2} to get 20x^{2}.
20x^{2}+188x+81-100=0
Combine 108x and 80x to get 188x.
20x^{2}+188x-19=0
Subtract 100 from 81 to get -19.
20x^{2}+188x=19
Add 19 to both sides. Anything plus zero gives itself.
\frac{20x^{2}+188x}{20}=\frac{19}{20}
Divide both sides by 20.
x^{2}+\frac{188}{20}x=\frac{19}{20}
Dividing by 20 undoes the multiplication by 20.
x^{2}+\frac{47}{5}x=\frac{19}{20}
Reduce the fraction \frac{188}{20} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{47}{5}x+\left(\frac{47}{10}\right)^{2}=\frac{19}{20}+\left(\frac{47}{10}\right)^{2}
Divide \frac{47}{5}, the coefficient of the x term, by 2 to get \frac{47}{10}. Then add the square of \frac{47}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{47}{5}x+\frac{2209}{100}=\frac{19}{20}+\frac{2209}{100}
Square \frac{47}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{47}{5}x+\frac{2209}{100}=\frac{576}{25}
Add \frac{19}{20} to \frac{2209}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{47}{10}\right)^{2}=\frac{576}{25}
Factor x^{2}+\frac{47}{5}x+\frac{2209}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{47}{10}\right)^{2}}=\sqrt{\frac{576}{25}}
Take the square root of both sides of the equation.
x+\frac{47}{10}=\frac{24}{5} x+\frac{47}{10}=-\frac{24}{5}
Simplify.
x=\frac{1}{10} x=-\frac{19}{2}
Subtract \frac{47}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}