Solve for x
x = \frac{14}{9} = 1\frac{5}{9} \approx 1.555555556
x=-\frac{4}{21}\approx -0.19047619
Graph
Share
Copied to clipboard
9\left(4x^{2}+12x+9\right)=25\left(1-3x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
36x^{2}+108x+81=25\left(1-3x\right)^{2}
Use the distributive property to multiply 9 by 4x^{2}+12x+9.
36x^{2}+108x+81=25\left(1-6x+9x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-3x\right)^{2}.
36x^{2}+108x+81=25-150x+225x^{2}
Use the distributive property to multiply 25 by 1-6x+9x^{2}.
36x^{2}+108x+81-25=-150x+225x^{2}
Subtract 25 from both sides.
36x^{2}+108x+56=-150x+225x^{2}
Subtract 25 from 81 to get 56.
36x^{2}+108x+56+150x=225x^{2}
Add 150x to both sides.
36x^{2}+258x+56=225x^{2}
Combine 108x and 150x to get 258x.
36x^{2}+258x+56-225x^{2}=0
Subtract 225x^{2} from both sides.
-189x^{2}+258x+56=0
Combine 36x^{2} and -225x^{2} to get -189x^{2}.
a+b=258 ab=-189\times 56=-10584
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -189x^{2}+ax+bx+56. To find a and b, set up a system to be solved.
-1,10584 -2,5292 -3,3528 -4,2646 -6,1764 -7,1512 -8,1323 -9,1176 -12,882 -14,756 -18,588 -21,504 -24,441 -27,392 -28,378 -36,294 -42,252 -49,216 -54,196 -56,189 -63,168 -72,147 -84,126 -98,108
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -10584.
-1+10584=10583 -2+5292=5290 -3+3528=3525 -4+2646=2642 -6+1764=1758 -7+1512=1505 -8+1323=1315 -9+1176=1167 -12+882=870 -14+756=742 -18+588=570 -21+504=483 -24+441=417 -27+392=365 -28+378=350 -36+294=258 -42+252=210 -49+216=167 -54+196=142 -56+189=133 -63+168=105 -72+147=75 -84+126=42 -98+108=10
Calculate the sum for each pair.
a=294 b=-36
The solution is the pair that gives sum 258.
\left(-189x^{2}+294x\right)+\left(-36x+56\right)
Rewrite -189x^{2}+258x+56 as \left(-189x^{2}+294x\right)+\left(-36x+56\right).
-21x\left(9x-14\right)-4\left(9x-14\right)
Factor out -21x in the first and -4 in the second group.
\left(9x-14\right)\left(-21x-4\right)
Factor out common term 9x-14 by using distributive property.
x=\frac{14}{9} x=-\frac{4}{21}
To find equation solutions, solve 9x-14=0 and -21x-4=0.
9\left(4x^{2}+12x+9\right)=25\left(1-3x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
36x^{2}+108x+81=25\left(1-3x\right)^{2}
Use the distributive property to multiply 9 by 4x^{2}+12x+9.
36x^{2}+108x+81=25\left(1-6x+9x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-3x\right)^{2}.
36x^{2}+108x+81=25-150x+225x^{2}
Use the distributive property to multiply 25 by 1-6x+9x^{2}.
36x^{2}+108x+81-25=-150x+225x^{2}
Subtract 25 from both sides.
36x^{2}+108x+56=-150x+225x^{2}
Subtract 25 from 81 to get 56.
36x^{2}+108x+56+150x=225x^{2}
Add 150x to both sides.
36x^{2}+258x+56=225x^{2}
Combine 108x and 150x to get 258x.
36x^{2}+258x+56-225x^{2}=0
Subtract 225x^{2} from both sides.
-189x^{2}+258x+56=0
Combine 36x^{2} and -225x^{2} to get -189x^{2}.
x=\frac{-258±\sqrt{258^{2}-4\left(-189\right)\times 56}}{2\left(-189\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -189 for a, 258 for b, and 56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-258±\sqrt{66564-4\left(-189\right)\times 56}}{2\left(-189\right)}
Square 258.
x=\frac{-258±\sqrt{66564+756\times 56}}{2\left(-189\right)}
Multiply -4 times -189.
x=\frac{-258±\sqrt{66564+42336}}{2\left(-189\right)}
Multiply 756 times 56.
x=\frac{-258±\sqrt{108900}}{2\left(-189\right)}
Add 66564 to 42336.
x=\frac{-258±330}{2\left(-189\right)}
Take the square root of 108900.
x=\frac{-258±330}{-378}
Multiply 2 times -189.
x=\frac{72}{-378}
Now solve the equation x=\frac{-258±330}{-378} when ± is plus. Add -258 to 330.
x=-\frac{4}{21}
Reduce the fraction \frac{72}{-378} to lowest terms by extracting and canceling out 18.
x=-\frac{588}{-378}
Now solve the equation x=\frac{-258±330}{-378} when ± is minus. Subtract 330 from -258.
x=\frac{14}{9}
Reduce the fraction \frac{-588}{-378} to lowest terms by extracting and canceling out 42.
x=-\frac{4}{21} x=\frac{14}{9}
The equation is now solved.
9\left(4x^{2}+12x+9\right)=25\left(1-3x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
36x^{2}+108x+81=25\left(1-3x\right)^{2}
Use the distributive property to multiply 9 by 4x^{2}+12x+9.
36x^{2}+108x+81=25\left(1-6x+9x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-3x\right)^{2}.
36x^{2}+108x+81=25-150x+225x^{2}
Use the distributive property to multiply 25 by 1-6x+9x^{2}.
36x^{2}+108x+81+150x=25+225x^{2}
Add 150x to both sides.
36x^{2}+258x+81=25+225x^{2}
Combine 108x and 150x to get 258x.
36x^{2}+258x+81-225x^{2}=25
Subtract 225x^{2} from both sides.
-189x^{2}+258x+81=25
Combine 36x^{2} and -225x^{2} to get -189x^{2}.
-189x^{2}+258x=25-81
Subtract 81 from both sides.
-189x^{2}+258x=-56
Subtract 81 from 25 to get -56.
\frac{-189x^{2}+258x}{-189}=-\frac{56}{-189}
Divide both sides by -189.
x^{2}+\frac{258}{-189}x=-\frac{56}{-189}
Dividing by -189 undoes the multiplication by -189.
x^{2}-\frac{86}{63}x=-\frac{56}{-189}
Reduce the fraction \frac{258}{-189} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{86}{63}x=\frac{8}{27}
Reduce the fraction \frac{-56}{-189} to lowest terms by extracting and canceling out 7.
x^{2}-\frac{86}{63}x+\left(-\frac{43}{63}\right)^{2}=\frac{8}{27}+\left(-\frac{43}{63}\right)^{2}
Divide -\frac{86}{63}, the coefficient of the x term, by 2 to get -\frac{43}{63}. Then add the square of -\frac{43}{63} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{86}{63}x+\frac{1849}{3969}=\frac{8}{27}+\frac{1849}{3969}
Square -\frac{43}{63} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{86}{63}x+\frac{1849}{3969}=\frac{3025}{3969}
Add \frac{8}{27} to \frac{1849}{3969} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{43}{63}\right)^{2}=\frac{3025}{3969}
Factor x^{2}-\frac{86}{63}x+\frac{1849}{3969}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{43}{63}\right)^{2}}=\sqrt{\frac{3025}{3969}}
Take the square root of both sides of the equation.
x-\frac{43}{63}=\frac{55}{63} x-\frac{43}{63}=-\frac{55}{63}
Simplify.
x=\frac{14}{9} x=-\frac{4}{21}
Add \frac{43}{63} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}