Solve for t
t=-3
t=0
Share
Copied to clipboard
9\left(1-2t+t^{2}\right)=12t^{2}+\left(t-3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-t\right)^{2}.
9-18t+9t^{2}=12t^{2}+\left(t-3\right)^{2}
Use the distributive property to multiply 9 by 1-2t+t^{2}.
9-18t+9t^{2}=12t^{2}+t^{2}-6t+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-3\right)^{2}.
9-18t+9t^{2}=13t^{2}-6t+9
Combine 12t^{2} and t^{2} to get 13t^{2}.
9-18t+9t^{2}-13t^{2}=-6t+9
Subtract 13t^{2} from both sides.
9-18t-4t^{2}=-6t+9
Combine 9t^{2} and -13t^{2} to get -4t^{2}.
9-18t-4t^{2}+6t=9
Add 6t to both sides.
9-12t-4t^{2}=9
Combine -18t and 6t to get -12t.
9-12t-4t^{2}-9=0
Subtract 9 from both sides.
-12t-4t^{2}=0
Subtract 9 from 9 to get 0.
t\left(-12-4t\right)=0
Factor out t.
t=0 t=-3
To find equation solutions, solve t=0 and -12-4t=0.
9\left(1-2t+t^{2}\right)=12t^{2}+\left(t-3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-t\right)^{2}.
9-18t+9t^{2}=12t^{2}+\left(t-3\right)^{2}
Use the distributive property to multiply 9 by 1-2t+t^{2}.
9-18t+9t^{2}=12t^{2}+t^{2}-6t+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-3\right)^{2}.
9-18t+9t^{2}=13t^{2}-6t+9
Combine 12t^{2} and t^{2} to get 13t^{2}.
9-18t+9t^{2}-13t^{2}=-6t+9
Subtract 13t^{2} from both sides.
9-18t-4t^{2}=-6t+9
Combine 9t^{2} and -13t^{2} to get -4t^{2}.
9-18t-4t^{2}+6t=9
Add 6t to both sides.
9-12t-4t^{2}=9
Combine -18t and 6t to get -12t.
9-12t-4t^{2}-9=0
Subtract 9 from both sides.
-12t-4t^{2}=0
Subtract 9 from 9 to get 0.
-4t^{2}-12t=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -12 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-12\right)±12}{2\left(-4\right)}
Take the square root of \left(-12\right)^{2}.
t=\frac{12±12}{2\left(-4\right)}
The opposite of -12 is 12.
t=\frac{12±12}{-8}
Multiply 2 times -4.
t=\frac{24}{-8}
Now solve the equation t=\frac{12±12}{-8} when ± is plus. Add 12 to 12.
t=-3
Divide 24 by -8.
t=\frac{0}{-8}
Now solve the equation t=\frac{12±12}{-8} when ± is minus. Subtract 12 from 12.
t=0
Divide 0 by -8.
t=-3 t=0
The equation is now solved.
9\left(1-2t+t^{2}\right)=12t^{2}+\left(t-3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-t\right)^{2}.
9-18t+9t^{2}=12t^{2}+\left(t-3\right)^{2}
Use the distributive property to multiply 9 by 1-2t+t^{2}.
9-18t+9t^{2}=12t^{2}+t^{2}-6t+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-3\right)^{2}.
9-18t+9t^{2}=13t^{2}-6t+9
Combine 12t^{2} and t^{2} to get 13t^{2}.
9-18t+9t^{2}-13t^{2}=-6t+9
Subtract 13t^{2} from both sides.
9-18t-4t^{2}=-6t+9
Combine 9t^{2} and -13t^{2} to get -4t^{2}.
9-18t-4t^{2}+6t=9
Add 6t to both sides.
9-12t-4t^{2}=9
Combine -18t and 6t to get -12t.
-12t-4t^{2}=9-9
Subtract 9 from both sides.
-12t-4t^{2}=0
Subtract 9 from 9 to get 0.
-4t^{2}-12t=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4t^{2}-12t}{-4}=\frac{0}{-4}
Divide both sides by -4.
t^{2}+\left(-\frac{12}{-4}\right)t=\frac{0}{-4}
Dividing by -4 undoes the multiplication by -4.
t^{2}+3t=\frac{0}{-4}
Divide -12 by -4.
t^{2}+3t=0
Divide 0 by -4.
t^{2}+3t+\left(\frac{3}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+3t+\frac{9}{4}=\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
\left(t+\frac{3}{2}\right)^{2}=\frac{9}{4}
Factor t^{2}+3t+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
t+\frac{3}{2}=\frac{3}{2} t+\frac{3}{2}=-\frac{3}{2}
Simplify.
t=0 t=-3
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}