Evaluate
-\frac{81}{7}\approx -11.571428571
Factor
-\frac{81}{7} = -11\frac{4}{7} = -11.571428571428571
Share
Copied to clipboard
\frac{\frac{9\left(-3\right)}{7}}{\frac{4}{12}}
Express 9\left(-\frac{3}{7}\right) as a single fraction.
\frac{\frac{-27}{7}}{\frac{4}{12}}
Multiply 9 and -3 to get -27.
\frac{-\frac{27}{7}}{\frac{4}{12}}
Fraction \frac{-27}{7} can be rewritten as -\frac{27}{7} by extracting the negative sign.
\frac{-\frac{27}{7}}{\frac{1}{3}}
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
-\frac{27}{7}\times 3
Divide -\frac{27}{7} by \frac{1}{3} by multiplying -\frac{27}{7} by the reciprocal of \frac{1}{3}.
\frac{-27\times 3}{7}
Express -\frac{27}{7}\times 3 as a single fraction.
\frac{-81}{7}
Multiply -27 and 3 to get -81.
-\frac{81}{7}
Fraction \frac{-81}{7} can be rewritten as -\frac{81}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}