Factor
\left(y+1\right)\left(9y+4\right)
Evaluate
\left(y+1\right)\left(9y+4\right)
Graph
Share
Copied to clipboard
a+b=13 ab=9\times 4=36
Factor the expression by grouping. First, the expression needs to be rewritten as 9y^{2}+ay+by+4. To find a and b, set up a system to be solved.
1,36 2,18 3,12 4,9 6,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Calculate the sum for each pair.
a=4 b=9
The solution is the pair that gives sum 13.
\left(9y^{2}+4y\right)+\left(9y+4\right)
Rewrite 9y^{2}+13y+4 as \left(9y^{2}+4y\right)+\left(9y+4\right).
y\left(9y+4\right)+9y+4
Factor out y in 9y^{2}+4y.
\left(9y+4\right)\left(y+1\right)
Factor out common term 9y+4 by using distributive property.
9y^{2}+13y+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-13±\sqrt{13^{2}-4\times 9\times 4}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-13±\sqrt{169-4\times 9\times 4}}{2\times 9}
Square 13.
y=\frac{-13±\sqrt{169-36\times 4}}{2\times 9}
Multiply -4 times 9.
y=\frac{-13±\sqrt{169-144}}{2\times 9}
Multiply -36 times 4.
y=\frac{-13±\sqrt{25}}{2\times 9}
Add 169 to -144.
y=\frac{-13±5}{2\times 9}
Take the square root of 25.
y=\frac{-13±5}{18}
Multiply 2 times 9.
y=-\frac{8}{18}
Now solve the equation y=\frac{-13±5}{18} when ± is plus. Add -13 to 5.
y=-\frac{4}{9}
Reduce the fraction \frac{-8}{18} to lowest terms by extracting and canceling out 2.
y=-\frac{18}{18}
Now solve the equation y=\frac{-13±5}{18} when ± is minus. Subtract 5 from -13.
y=-1
Divide -18 by 18.
9y^{2}+13y+4=9\left(y-\left(-\frac{4}{9}\right)\right)\left(y-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{4}{9} for x_{1} and -1 for x_{2}.
9y^{2}+13y+4=9\left(y+\frac{4}{9}\right)\left(y+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
9y^{2}+13y+4=9\times \frac{9y+4}{9}\left(y+1\right)
Add \frac{4}{9} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
9y^{2}+13y+4=\left(9y+4\right)\left(y+1\right)
Cancel out 9, the greatest common factor in 9 and 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}