Solve for y
y=\frac{2\sqrt{6}-2}{3}\approx 0.966326495
y=\frac{-2\sqrt{6}-2}{3}\approx -2.299659829
Graph
Share
Copied to clipboard
9y^{2}+12y-20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-12±\sqrt{12^{2}-4\times 9\left(-20\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 12 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-12±\sqrt{144-4\times 9\left(-20\right)}}{2\times 9}
Square 12.
y=\frac{-12±\sqrt{144-36\left(-20\right)}}{2\times 9}
Multiply -4 times 9.
y=\frac{-12±\sqrt{144+720}}{2\times 9}
Multiply -36 times -20.
y=\frac{-12±\sqrt{864}}{2\times 9}
Add 144 to 720.
y=\frac{-12±12\sqrt{6}}{2\times 9}
Take the square root of 864.
y=\frac{-12±12\sqrt{6}}{18}
Multiply 2 times 9.
y=\frac{12\sqrt{6}-12}{18}
Now solve the equation y=\frac{-12±12\sqrt{6}}{18} when ± is plus. Add -12 to 12\sqrt{6}.
y=\frac{2\sqrt{6}-2}{3}
Divide -12+12\sqrt{6} by 18.
y=\frac{-12\sqrt{6}-12}{18}
Now solve the equation y=\frac{-12±12\sqrt{6}}{18} when ± is minus. Subtract 12\sqrt{6} from -12.
y=\frac{-2\sqrt{6}-2}{3}
Divide -12-12\sqrt{6} by 18.
y=\frac{2\sqrt{6}-2}{3} y=\frac{-2\sqrt{6}-2}{3}
The equation is now solved.
9y^{2}+12y-20=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9y^{2}+12y-20-\left(-20\right)=-\left(-20\right)
Add 20 to both sides of the equation.
9y^{2}+12y=-\left(-20\right)
Subtracting -20 from itself leaves 0.
9y^{2}+12y=20
Subtract -20 from 0.
\frac{9y^{2}+12y}{9}=\frac{20}{9}
Divide both sides by 9.
y^{2}+\frac{12}{9}y=\frac{20}{9}
Dividing by 9 undoes the multiplication by 9.
y^{2}+\frac{4}{3}y=\frac{20}{9}
Reduce the fraction \frac{12}{9} to lowest terms by extracting and canceling out 3.
y^{2}+\frac{4}{3}y+\left(\frac{2}{3}\right)^{2}=\frac{20}{9}+\left(\frac{2}{3}\right)^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{4}{3}y+\frac{4}{9}=\frac{20+4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{4}{3}y+\frac{4}{9}=\frac{8}{3}
Add \frac{20}{9} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{2}{3}\right)^{2}=\frac{8}{3}
Factor y^{2}+\frac{4}{3}y+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{2}{3}\right)^{2}}=\sqrt{\frac{8}{3}}
Take the square root of both sides of the equation.
y+\frac{2}{3}=\frac{2\sqrt{6}}{3} y+\frac{2}{3}=-\frac{2\sqrt{6}}{3}
Simplify.
y=\frac{2\sqrt{6}-2}{3} y=\frac{-2\sqrt{6}-2}{3}
Subtract \frac{2}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}