Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-8x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 9\times 4}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -8 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 9\times 4}}{2\times 9}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-36\times 4}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-8\right)±\sqrt{64-144}}{2\times 9}
Multiply -36 times 4.
x=\frac{-\left(-8\right)±\sqrt{-80}}{2\times 9}
Add 64 to -144.
x=\frac{-\left(-8\right)±4\sqrt{5}i}{2\times 9}
Take the square root of -80.
x=\frac{8±4\sqrt{5}i}{2\times 9}
The opposite of -8 is 8.
x=\frac{8±4\sqrt{5}i}{18}
Multiply 2 times 9.
x=\frac{8+4\sqrt{5}i}{18}
Now solve the equation x=\frac{8±4\sqrt{5}i}{18} when ± is plus. Add 8 to 4i\sqrt{5}.
x=\frac{4+2\sqrt{5}i}{9}
Divide 8+4i\sqrt{5} by 18.
x=\frac{-4\sqrt{5}i+8}{18}
Now solve the equation x=\frac{8±4\sqrt{5}i}{18} when ± is minus. Subtract 4i\sqrt{5} from 8.
x=\frac{-2\sqrt{5}i+4}{9}
Divide 8-4i\sqrt{5} by 18.
x=\frac{4+2\sqrt{5}i}{9} x=\frac{-2\sqrt{5}i+4}{9}
The equation is now solved.
9x^{2}-8x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}-8x+4-4=-4
Subtract 4 from both sides of the equation.
9x^{2}-8x=-4
Subtracting 4 from itself leaves 0.
\frac{9x^{2}-8x}{9}=-\frac{4}{9}
Divide both sides by 9.
x^{2}-\frac{8}{9}x=-\frac{4}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{8}{9}x+\left(-\frac{4}{9}\right)^{2}=-\frac{4}{9}+\left(-\frac{4}{9}\right)^{2}
Divide -\frac{8}{9}, the coefficient of the x term, by 2 to get -\frac{4}{9}. Then add the square of -\frac{4}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{9}x+\frac{16}{81}=-\frac{4}{9}+\frac{16}{81}
Square -\frac{4}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{9}x+\frac{16}{81}=-\frac{20}{81}
Add -\frac{4}{9} to \frac{16}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{9}\right)^{2}=-\frac{20}{81}
Factor x^{2}-\frac{8}{9}x+\frac{16}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{9}\right)^{2}}=\sqrt{-\frac{20}{81}}
Take the square root of both sides of the equation.
x-\frac{4}{9}=\frac{2\sqrt{5}i}{9} x-\frac{4}{9}=-\frac{2\sqrt{5}i}{9}
Simplify.
x=\frac{4+2\sqrt{5}i}{9} x=\frac{-2\sqrt{5}i+4}{9}
Add \frac{4}{9} to both sides of the equation.