Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-6x-18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9\left(-18\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9\left(-18\right)}}{2\times 9}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-36\left(-18\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-6\right)±\sqrt{36+648}}{2\times 9}
Multiply -36 times -18.
x=\frac{-\left(-6\right)±\sqrt{684}}{2\times 9}
Add 36 to 648.
x=\frac{-\left(-6\right)±6\sqrt{19}}{2\times 9}
Take the square root of 684.
x=\frac{6±6\sqrt{19}}{2\times 9}
The opposite of -6 is 6.
x=\frac{6±6\sqrt{19}}{18}
Multiply 2 times 9.
x=\frac{6\sqrt{19}+6}{18}
Now solve the equation x=\frac{6±6\sqrt{19}}{18} when ± is plus. Add 6 to 6\sqrt{19}.
x=\frac{\sqrt{19}+1}{3}
Divide 6+6\sqrt{19} by 18.
x=\frac{6-6\sqrt{19}}{18}
Now solve the equation x=\frac{6±6\sqrt{19}}{18} when ± is minus. Subtract 6\sqrt{19} from 6.
x=\frac{1-\sqrt{19}}{3}
Divide 6-6\sqrt{19} by 18.
9x^{2}-6x-18=9\left(x-\frac{\sqrt{19}+1}{3}\right)\left(x-\frac{1-\sqrt{19}}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1+\sqrt{19}}{3} for x_{1} and \frac{1-\sqrt{19}}{3} for x_{2}.