Solve for x (complex solution)
x=\frac{16+4\sqrt{29}i}{9}\approx 1.777777778+2.393406581i
x=\frac{-4\sqrt{29}i+16}{9}\approx 1.777777778-2.393406581i
Graph
Share
Copied to clipboard
9x^{2}-32x+80=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 9\times 80}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -32 for b, and 80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 9\times 80}}{2\times 9}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-36\times 80}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-32\right)±\sqrt{1024-2880}}{2\times 9}
Multiply -36 times 80.
x=\frac{-\left(-32\right)±\sqrt{-1856}}{2\times 9}
Add 1024 to -2880.
x=\frac{-\left(-32\right)±8\sqrt{29}i}{2\times 9}
Take the square root of -1856.
x=\frac{32±8\sqrt{29}i}{2\times 9}
The opposite of -32 is 32.
x=\frac{32±8\sqrt{29}i}{18}
Multiply 2 times 9.
x=\frac{32+8\sqrt{29}i}{18}
Now solve the equation x=\frac{32±8\sqrt{29}i}{18} when ± is plus. Add 32 to 8i\sqrt{29}.
x=\frac{16+4\sqrt{29}i}{9}
Divide 32+8i\sqrt{29} by 18.
x=\frac{-8\sqrt{29}i+32}{18}
Now solve the equation x=\frac{32±8\sqrt{29}i}{18} when ± is minus. Subtract 8i\sqrt{29} from 32.
x=\frac{-4\sqrt{29}i+16}{9}
Divide 32-8i\sqrt{29} by 18.
x=\frac{16+4\sqrt{29}i}{9} x=\frac{-4\sqrt{29}i+16}{9}
The equation is now solved.
9x^{2}-32x+80=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}-32x+80-80=-80
Subtract 80 from both sides of the equation.
9x^{2}-32x=-80
Subtracting 80 from itself leaves 0.
\frac{9x^{2}-32x}{9}=-\frac{80}{9}
Divide both sides by 9.
x^{2}-\frac{32}{9}x=-\frac{80}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{32}{9}x+\left(-\frac{16}{9}\right)^{2}=-\frac{80}{9}+\left(-\frac{16}{9}\right)^{2}
Divide -\frac{32}{9}, the coefficient of the x term, by 2 to get -\frac{16}{9}. Then add the square of -\frac{16}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{32}{9}x+\frac{256}{81}=-\frac{80}{9}+\frac{256}{81}
Square -\frac{16}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{32}{9}x+\frac{256}{81}=-\frac{464}{81}
Add -\frac{80}{9} to \frac{256}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{16}{9}\right)^{2}=-\frac{464}{81}
Factor x^{2}-\frac{32}{9}x+\frac{256}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{16}{9}\right)^{2}}=\sqrt{-\frac{464}{81}}
Take the square root of both sides of the equation.
x-\frac{16}{9}=\frac{4\sqrt{29}i}{9} x-\frac{16}{9}=-\frac{4\sqrt{29}i}{9}
Simplify.
x=\frac{16+4\sqrt{29}i}{9} x=\frac{-4\sqrt{29}i+16}{9}
Add \frac{16}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}