Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-24x+21=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 9\times 21}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -24 for b, and 21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 9\times 21}}{2\times 9}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-36\times 21}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-24\right)±\sqrt{576-756}}{2\times 9}
Multiply -36 times 21.
x=\frac{-\left(-24\right)±\sqrt{-180}}{2\times 9}
Add 576 to -756.
x=\frac{-\left(-24\right)±6\sqrt{5}i}{2\times 9}
Take the square root of -180.
x=\frac{24±6\sqrt{5}i}{2\times 9}
The opposite of -24 is 24.
x=\frac{24±6\sqrt{5}i}{18}
Multiply 2 times 9.
x=\frac{24+6\sqrt{5}i}{18}
Now solve the equation x=\frac{24±6\sqrt{5}i}{18} when ± is plus. Add 24 to 6i\sqrt{5}.
x=\frac{4+\sqrt{5}i}{3}
Divide 24+6i\sqrt{5} by 18.
x=\frac{-6\sqrt{5}i+24}{18}
Now solve the equation x=\frac{24±6\sqrt{5}i}{18} when ± is minus. Subtract 6i\sqrt{5} from 24.
x=\frac{-\sqrt{5}i+4}{3}
Divide 24-6i\sqrt{5} by 18.
x=\frac{4+\sqrt{5}i}{3} x=\frac{-\sqrt{5}i+4}{3}
The equation is now solved.
9x^{2}-24x+21=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}-24x+21-21=-21
Subtract 21 from both sides of the equation.
9x^{2}-24x=-21
Subtracting 21 from itself leaves 0.
\frac{9x^{2}-24x}{9}=-\frac{21}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{24}{9}\right)x=-\frac{21}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{8}{3}x=-\frac{21}{9}
Reduce the fraction \frac{-24}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{8}{3}x=-\frac{7}{3}
Reduce the fraction \frac{-21}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=-\frac{7}{3}+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=-\frac{7}{3}+\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{3}x+\frac{16}{9}=-\frac{5}{9}
Add -\frac{7}{3} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{3}\right)^{2}=-\frac{5}{9}
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{-\frac{5}{9}}
Take the square root of both sides of the equation.
x-\frac{4}{3}=\frac{\sqrt{5}i}{3} x-\frac{4}{3}=-\frac{\sqrt{5}i}{3}
Simplify.
x=\frac{4+\sqrt{5}i}{3} x=\frac{-\sqrt{5}i+4}{3}
Add \frac{4}{3} to both sides of the equation.