Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
a+b=-24 ab=9\times 16=144
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9x^{2}+ax+bx+16. To find a and b, set up a system to be solved.
-1,-144 -2,-72 -3,-48 -4,-36 -6,-24 -8,-18 -9,-16 -12,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 144.
-1-144=-145 -2-72=-74 -3-48=-51 -4-36=-40 -6-24=-30 -8-18=-26 -9-16=-25 -12-12=-24
Calculate the sum for each pair.
a=-12 b=-12
The solution is the pair that gives sum -24.
\left(9x^{2}-12x\right)+\left(-12x+16\right)
Rewrite 9x^{2}-24x+16 as \left(9x^{2}-12x\right)+\left(-12x+16\right).
3x\left(3x-4\right)-4\left(3x-4\right)
Factor out 3x in the first and -4 in the second group.
\left(3x-4\right)\left(3x-4\right)
Factor out common term 3x-4 by using distributive property.
\left(3x-4\right)^{2}
Rewrite as a binomial square.
x=\frac{4}{3}
To find equation solution, solve 3x-4=0.
9x^{2}-24x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 9\times 16}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -24 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 9\times 16}}{2\times 9}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-36\times 16}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-24\right)±\sqrt{576-576}}{2\times 9}
Multiply -36 times 16.
x=\frac{-\left(-24\right)±\sqrt{0}}{2\times 9}
Add 576 to -576.
x=-\frac{-24}{2\times 9}
Take the square root of 0.
x=\frac{24}{2\times 9}
The opposite of -24 is 24.
x=\frac{24}{18}
Multiply 2 times 9.
x=\frac{4}{3}
Reduce the fraction \frac{24}{18} to lowest terms by extracting and canceling out 6.
9x^{2}-24x+16=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}-24x+16-16=-16
Subtract 16 from both sides of the equation.
9x^{2}-24x=-16
Subtracting 16 from itself leaves 0.
\frac{9x^{2}-24x}{9}=-\frac{16}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{24}{9}\right)x=-\frac{16}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{8}{3}x=-\frac{16}{9}
Reduce the fraction \frac{-24}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=-\frac{16}{9}+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{-16+16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{3}x+\frac{16}{9}=0
Add -\frac{16}{9} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{3}\right)^{2}=0
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{4}{3}=0 x-\frac{4}{3}=0
Simplify.
x=\frac{4}{3} x=\frac{4}{3}
Add \frac{4}{3} to both sides of the equation.
x=\frac{4}{3}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}