Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-18x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 9\left(-3\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -18 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 9\left(-3\right)}}{2\times 9}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-36\left(-3\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-18\right)±\sqrt{324+108}}{2\times 9}
Multiply -36 times -3.
x=\frac{-\left(-18\right)±\sqrt{432}}{2\times 9}
Add 324 to 108.
x=\frac{-\left(-18\right)±12\sqrt{3}}{2\times 9}
Take the square root of 432.
x=\frac{18±12\sqrt{3}}{2\times 9}
The opposite of -18 is 18.
x=\frac{18±12\sqrt{3}}{18}
Multiply 2 times 9.
x=\frac{12\sqrt{3}+18}{18}
Now solve the equation x=\frac{18±12\sqrt{3}}{18} when ± is plus. Add 18 to 12\sqrt{3}.
x=\frac{2\sqrt{3}}{3}+1
Divide 18+12\sqrt{3} by 18.
x=\frac{18-12\sqrt{3}}{18}
Now solve the equation x=\frac{18±12\sqrt{3}}{18} when ± is minus. Subtract 12\sqrt{3} from 18.
x=-\frac{2\sqrt{3}}{3}+1
Divide 18-12\sqrt{3} by 18.
x=\frac{2\sqrt{3}}{3}+1 x=-\frac{2\sqrt{3}}{3}+1
The equation is now solved.
9x^{2}-18x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}-18x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
9x^{2}-18x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
9x^{2}-18x=3
Subtract -3 from 0.
\frac{9x^{2}-18x}{9}=\frac{3}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{18}{9}\right)x=\frac{3}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-2x=\frac{3}{9}
Divide -18 by 9.
x^{2}-2x=\frac{1}{3}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
x^{2}-2x+1=\frac{1}{3}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{4}{3}
Add \frac{1}{3} to 1.
\left(x-1\right)^{2}=\frac{4}{3}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{4}{3}}
Take the square root of both sides of the equation.
x-1=\frac{2\sqrt{3}}{3} x-1=-\frac{2\sqrt{3}}{3}
Simplify.
x=\frac{2\sqrt{3}}{3}+1 x=-\frac{2\sqrt{3}}{3}+1
Add 1 to both sides of the equation.