Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-19=0
Subtract 4 from -15 to get -19.
9x^{2}=19
Add 19 to both sides. Anything plus zero gives itself.
x^{2}=\frac{19}{9}
Divide both sides by 9.
x=\frac{\sqrt{19}}{3} x=-\frac{\sqrt{19}}{3}
Take the square root of both sides of the equation.
9x^{2}-19=0
Subtract 4 from -15 to get -19.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-19\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-19\right)}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\left(-19\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{684}}{2\times 9}
Multiply -36 times -19.
x=\frac{0±6\sqrt{19}}{2\times 9}
Take the square root of 684.
x=\frac{0±6\sqrt{19}}{18}
Multiply 2 times 9.
x=\frac{\sqrt{19}}{3}
Now solve the equation x=\frac{0±6\sqrt{19}}{18} when ± is plus.
x=-\frac{\sqrt{19}}{3}
Now solve the equation x=\frac{0±6\sqrt{19}}{18} when ± is minus.
x=\frac{\sqrt{19}}{3} x=-\frac{\sqrt{19}}{3}
The equation is now solved.