Solve for x (complex solution)
x=\frac{2+\sqrt{6}i}{3}\approx 0.666666667+0.816496581i
x=\frac{-\sqrt{6}i+2}{3}\approx 0.666666667-0.816496581i
Graph
Share
Copied to clipboard
9x^{2}-12x+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9\times 10}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -12 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 9\times 10}}{2\times 9}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-36\times 10}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-12\right)±\sqrt{144-360}}{2\times 9}
Multiply -36 times 10.
x=\frac{-\left(-12\right)±\sqrt{-216}}{2\times 9}
Add 144 to -360.
x=\frac{-\left(-12\right)±6\sqrt{6}i}{2\times 9}
Take the square root of -216.
x=\frac{12±6\sqrt{6}i}{2\times 9}
The opposite of -12 is 12.
x=\frac{12±6\sqrt{6}i}{18}
Multiply 2 times 9.
x=\frac{12+6\sqrt{6}i}{18}
Now solve the equation x=\frac{12±6\sqrt{6}i}{18} when ± is plus. Add 12 to 6i\sqrt{6}.
x=\frac{2+\sqrt{6}i}{3}
Divide 12+6i\sqrt{6} by 18.
x=\frac{-6\sqrt{6}i+12}{18}
Now solve the equation x=\frac{12±6\sqrt{6}i}{18} when ± is minus. Subtract 6i\sqrt{6} from 12.
x=\frac{-\sqrt{6}i+2}{3}
Divide 12-6i\sqrt{6} by 18.
x=\frac{2+\sqrt{6}i}{3} x=\frac{-\sqrt{6}i+2}{3}
The equation is now solved.
9x^{2}-12x+10=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}-12x+10-10=-10
Subtract 10 from both sides of the equation.
9x^{2}-12x=-10
Subtracting 10 from itself leaves 0.
\frac{9x^{2}-12x}{9}=-\frac{10}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{12}{9}\right)x=-\frac{10}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{4}{3}x=-\frac{10}{9}
Reduce the fraction \frac{-12}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=-\frac{10}{9}+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{-10+4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{3}x+\frac{4}{9}=-\frac{2}{3}
Add -\frac{10}{9} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{3}\right)^{2}=-\frac{2}{3}
Factor x^{2}-\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{-\frac{2}{3}}
Take the square root of both sides of the equation.
x-\frac{2}{3}=\frac{\sqrt{6}i}{3} x-\frac{2}{3}=-\frac{\sqrt{6}i}{3}
Simplify.
x=\frac{2+\sqrt{6}i}{3} x=\frac{-\sqrt{6}i+2}{3}
Add \frac{2}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}