Solve for x
x=\frac{2\sqrt{11}}{3}+7\approx 9.211083194
x=-\frac{2\sqrt{11}}{3}+7\approx 4.788916806
Graph
Share
Copied to clipboard
9x^{2}-126x+397=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-126\right)±\sqrt{\left(-126\right)^{2}-4\times 9\times 397}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -126 for b, and 397 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-126\right)±\sqrt{15876-4\times 9\times 397}}{2\times 9}
Square -126.
x=\frac{-\left(-126\right)±\sqrt{15876-36\times 397}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-126\right)±\sqrt{15876-14292}}{2\times 9}
Multiply -36 times 397.
x=\frac{-\left(-126\right)±\sqrt{1584}}{2\times 9}
Add 15876 to -14292.
x=\frac{-\left(-126\right)±12\sqrt{11}}{2\times 9}
Take the square root of 1584.
x=\frac{126±12\sqrt{11}}{2\times 9}
The opposite of -126 is 126.
x=\frac{126±12\sqrt{11}}{18}
Multiply 2 times 9.
x=\frac{12\sqrt{11}+126}{18}
Now solve the equation x=\frac{126±12\sqrt{11}}{18} when ± is plus. Add 126 to 12\sqrt{11}.
x=\frac{2\sqrt{11}}{3}+7
Divide 126+12\sqrt{11} by 18.
x=\frac{126-12\sqrt{11}}{18}
Now solve the equation x=\frac{126±12\sqrt{11}}{18} when ± is minus. Subtract 12\sqrt{11} from 126.
x=-\frac{2\sqrt{11}}{3}+7
Divide 126-12\sqrt{11} by 18.
x=\frac{2\sqrt{11}}{3}+7 x=-\frac{2\sqrt{11}}{3}+7
The equation is now solved.
9x^{2}-126x+397=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}-126x+397-397=-397
Subtract 397 from both sides of the equation.
9x^{2}-126x=-397
Subtracting 397 from itself leaves 0.
\frac{9x^{2}-126x}{9}=-\frac{397}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{126}{9}\right)x=-\frac{397}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-14x=-\frac{397}{9}
Divide -126 by 9.
x^{2}-14x+\left(-7\right)^{2}=-\frac{397}{9}+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=-\frac{397}{9}+49
Square -7.
x^{2}-14x+49=\frac{44}{9}
Add -\frac{397}{9} to 49.
\left(x-7\right)^{2}=\frac{44}{9}
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{\frac{44}{9}}
Take the square root of both sides of the equation.
x-7=\frac{2\sqrt{11}}{3} x-7=-\frac{2\sqrt{11}}{3}
Simplify.
x=\frac{2\sqrt{11}}{3}+7 x=-\frac{2\sqrt{11}}{3}+7
Add 7 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}