Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+9-25=0
Subtract 25 from both sides.
9x^{2}-16=0
Subtract 25 from 9 to get -16.
\left(3x-4\right)\left(3x+4\right)=0
Consider 9x^{2}-16. Rewrite 9x^{2}-16 as \left(3x\right)^{2}-4^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{4}{3} x=-\frac{4}{3}
To find equation solutions, solve 3x-4=0 and 3x+4=0.
9x^{2}=25-9
Subtract 9 from both sides.
9x^{2}=16
Subtract 9 from 25 to get 16.
x^{2}=\frac{16}{9}
Divide both sides by 9.
x=\frac{4}{3} x=-\frac{4}{3}
Take the square root of both sides of the equation.
9x^{2}+9-25=0
Subtract 25 from both sides.
9x^{2}-16=0
Subtract 25 from 9 to get -16.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-16\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-16\right)}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\left(-16\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{576}}{2\times 9}
Multiply -36 times -16.
x=\frac{0±24}{2\times 9}
Take the square root of 576.
x=\frac{0±24}{18}
Multiply 2 times 9.
x=\frac{4}{3}
Now solve the equation x=\frac{0±24}{18} when ± is plus. Reduce the fraction \frac{24}{18} to lowest terms by extracting and canceling out 6.
x=-\frac{4}{3}
Now solve the equation x=\frac{0±24}{18} when ± is minus. Reduce the fraction \frac{-24}{18} to lowest terms by extracting and canceling out 6.
x=\frac{4}{3} x=-\frac{4}{3}
The equation is now solved.