Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+80x-104=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-80±\sqrt{80^{2}-4\times 9\left(-104\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 80 for b, and -104 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-80±\sqrt{6400-4\times 9\left(-104\right)}}{2\times 9}
Square 80.
x=\frac{-80±\sqrt{6400-36\left(-104\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-80±\sqrt{6400+3744}}{2\times 9}
Multiply -36 times -104.
x=\frac{-80±\sqrt{10144}}{2\times 9}
Add 6400 to 3744.
x=\frac{-80±4\sqrt{634}}{2\times 9}
Take the square root of 10144.
x=\frac{-80±4\sqrt{634}}{18}
Multiply 2 times 9.
x=\frac{4\sqrt{634}-80}{18}
Now solve the equation x=\frac{-80±4\sqrt{634}}{18} when ± is plus. Add -80 to 4\sqrt{634}.
x=\frac{2\sqrt{634}-40}{9}
Divide -80+4\sqrt{634} by 18.
x=\frac{-4\sqrt{634}-80}{18}
Now solve the equation x=\frac{-80±4\sqrt{634}}{18} when ± is minus. Subtract 4\sqrt{634} from -80.
x=\frac{-2\sqrt{634}-40}{9}
Divide -80-4\sqrt{634} by 18.
x=\frac{2\sqrt{634}-40}{9} x=\frac{-2\sqrt{634}-40}{9}
The equation is now solved.
9x^{2}+80x-104=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}+80x-104-\left(-104\right)=-\left(-104\right)
Add 104 to both sides of the equation.
9x^{2}+80x=-\left(-104\right)
Subtracting -104 from itself leaves 0.
9x^{2}+80x=104
Subtract -104 from 0.
\frac{9x^{2}+80x}{9}=\frac{104}{9}
Divide both sides by 9.
x^{2}+\frac{80}{9}x=\frac{104}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{80}{9}x+\left(\frac{40}{9}\right)^{2}=\frac{104}{9}+\left(\frac{40}{9}\right)^{2}
Divide \frac{80}{9}, the coefficient of the x term, by 2 to get \frac{40}{9}. Then add the square of \frac{40}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{80}{9}x+\frac{1600}{81}=\frac{104}{9}+\frac{1600}{81}
Square \frac{40}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{80}{9}x+\frac{1600}{81}=\frac{2536}{81}
Add \frac{104}{9} to \frac{1600}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{40}{9}\right)^{2}=\frac{2536}{81}
Factor x^{2}+\frac{80}{9}x+\frac{1600}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{40}{9}\right)^{2}}=\sqrt{\frac{2536}{81}}
Take the square root of both sides of the equation.
x+\frac{40}{9}=\frac{2\sqrt{634}}{9} x+\frac{40}{9}=-\frac{2\sqrt{634}}{9}
Simplify.
x=\frac{2\sqrt{634}-40}{9} x=\frac{-2\sqrt{634}-40}{9}
Subtract \frac{40}{9} from both sides of the equation.