Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+6x-9=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 9\left(-9\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 9 for a, 6 for b, and -9 for c in the quadratic formula.
x=\frac{-6±6\sqrt{10}}{18}
Do the calculations.
x=\frac{\sqrt{10}-1}{3} x=\frac{-\sqrt{10}-1}{3}
Solve the equation x=\frac{-6±6\sqrt{10}}{18} when ± is plus and when ± is minus.
9\left(x-\frac{\sqrt{10}-1}{3}\right)\left(x-\frac{-\sqrt{10}-1}{3}\right)<0
Rewrite the inequality by using the obtained solutions.
x-\frac{\sqrt{10}-1}{3}>0 x-\frac{-\sqrt{10}-1}{3}<0
For the product to be negative, x-\frac{\sqrt{10}-1}{3} and x-\frac{-\sqrt{10}-1}{3} have to be of the opposite signs. Consider the case when x-\frac{\sqrt{10}-1}{3} is positive and x-\frac{-\sqrt{10}-1}{3} is negative.
x\in \emptyset
This is false for any x.
x-\frac{-\sqrt{10}-1}{3}>0 x-\frac{\sqrt{10}-1}{3}<0
Consider the case when x-\frac{-\sqrt{10}-1}{3} is positive and x-\frac{\sqrt{10}-1}{3} is negative.
x\in \left(\frac{-\sqrt{10}-1}{3},\frac{\sqrt{10}-1}{3}\right)
The solution satisfying both inequalities is x\in \left(\frac{-\sqrt{10}-1}{3},\frac{\sqrt{10}-1}{3}\right).
x\in \left(\frac{-\sqrt{10}-1}{3},\frac{\sqrt{10}-1}{3}\right)
The final solution is the union of the obtained solutions.