Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+5x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\times 9\times 2}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 5 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 9\times 2}}{2\times 9}
Square 5.
x=\frac{-5±\sqrt{25-36\times 2}}{2\times 9}
Multiply -4 times 9.
x=\frac{-5±\sqrt{25-72}}{2\times 9}
Multiply -36 times 2.
x=\frac{-5±\sqrt{-47}}{2\times 9}
Add 25 to -72.
x=\frac{-5±\sqrt{47}i}{2\times 9}
Take the square root of -47.
x=\frac{-5±\sqrt{47}i}{18}
Multiply 2 times 9.
x=\frac{-5+\sqrt{47}i}{18}
Now solve the equation x=\frac{-5±\sqrt{47}i}{18} when ± is plus. Add -5 to i\sqrt{47}.
x=\frac{-\sqrt{47}i-5}{18}
Now solve the equation x=\frac{-5±\sqrt{47}i}{18} when ± is minus. Subtract i\sqrt{47} from -5.
x=\frac{-5+\sqrt{47}i}{18} x=\frac{-\sqrt{47}i-5}{18}
The equation is now solved.
9x^{2}+5x+2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}+5x+2-2=-2
Subtract 2 from both sides of the equation.
9x^{2}+5x=-2
Subtracting 2 from itself leaves 0.
\frac{9x^{2}+5x}{9}=-\frac{2}{9}
Divide both sides by 9.
x^{2}+\frac{5}{9}x=-\frac{2}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{5}{9}x+\left(\frac{5}{18}\right)^{2}=-\frac{2}{9}+\left(\frac{5}{18}\right)^{2}
Divide \frac{5}{9}, the coefficient of the x term, by 2 to get \frac{5}{18}. Then add the square of \frac{5}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{9}x+\frac{25}{324}=-\frac{2}{9}+\frac{25}{324}
Square \frac{5}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{9}x+\frac{25}{324}=-\frac{47}{324}
Add -\frac{2}{9} to \frac{25}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{18}\right)^{2}=-\frac{47}{324}
Factor x^{2}+\frac{5}{9}x+\frac{25}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{18}\right)^{2}}=\sqrt{-\frac{47}{324}}
Take the square root of both sides of the equation.
x+\frac{5}{18}=\frac{\sqrt{47}i}{18} x+\frac{5}{18}=-\frac{\sqrt{47}i}{18}
Simplify.
x=\frac{-5+\sqrt{47}i}{18} x=\frac{-\sqrt{47}i-5}{18}
Subtract \frac{5}{18} from both sides of the equation.