Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+4x+89=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\times 9\times 89}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 4 for b, and 89 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 9\times 89}}{2\times 9}
Square 4.
x=\frac{-4±\sqrt{16-36\times 89}}{2\times 9}
Multiply -4 times 9.
x=\frac{-4±\sqrt{16-3204}}{2\times 9}
Multiply -36 times 89.
x=\frac{-4±\sqrt{-3188}}{2\times 9}
Add 16 to -3204.
x=\frac{-4±2\sqrt{797}i}{2\times 9}
Take the square root of -3188.
x=\frac{-4±2\sqrt{797}i}{18}
Multiply 2 times 9.
x=\frac{-4+2\sqrt{797}i}{18}
Now solve the equation x=\frac{-4±2\sqrt{797}i}{18} when ± is plus. Add -4 to 2i\sqrt{797}.
x=\frac{-2+\sqrt{797}i}{9}
Divide -4+2i\sqrt{797} by 18.
x=\frac{-2\sqrt{797}i-4}{18}
Now solve the equation x=\frac{-4±2\sqrt{797}i}{18} when ± is minus. Subtract 2i\sqrt{797} from -4.
x=\frac{-\sqrt{797}i-2}{9}
Divide -4-2i\sqrt{797} by 18.
x=\frac{-2+\sqrt{797}i}{9} x=\frac{-\sqrt{797}i-2}{9}
The equation is now solved.
9x^{2}+4x+89=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}+4x+89-89=-89
Subtract 89 from both sides of the equation.
9x^{2}+4x=-89
Subtracting 89 from itself leaves 0.
\frac{9x^{2}+4x}{9}=-\frac{89}{9}
Divide both sides by 9.
x^{2}+\frac{4}{9}x=-\frac{89}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{4}{9}x+\left(\frac{2}{9}\right)^{2}=-\frac{89}{9}+\left(\frac{2}{9}\right)^{2}
Divide \frac{4}{9}, the coefficient of the x term, by 2 to get \frac{2}{9}. Then add the square of \frac{2}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{9}x+\frac{4}{81}=-\frac{89}{9}+\frac{4}{81}
Square \frac{2}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{9}x+\frac{4}{81}=-\frac{797}{81}
Add -\frac{89}{9} to \frac{4}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{9}\right)^{2}=-\frac{797}{81}
Factor x^{2}+\frac{4}{9}x+\frac{4}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{9}\right)^{2}}=\sqrt{-\frac{797}{81}}
Take the square root of both sides of the equation.
x+\frac{2}{9}=\frac{\sqrt{797}i}{9} x+\frac{2}{9}=-\frac{\sqrt{797}i}{9}
Simplify.
x=\frac{-2+\sqrt{797}i}{9} x=\frac{-\sqrt{797}i-2}{9}
Subtract \frac{2}{9} from both sides of the equation.