Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+48x-64=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-48±\sqrt{48^{2}-4\times 9\left(-64\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-48±\sqrt{2304-4\times 9\left(-64\right)}}{2\times 9}
Square 48.
x=\frac{-48±\sqrt{2304-36\left(-64\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-48±\sqrt{2304+2304}}{2\times 9}
Multiply -36 times -64.
x=\frac{-48±\sqrt{4608}}{2\times 9}
Add 2304 to 2304.
x=\frac{-48±48\sqrt{2}}{2\times 9}
Take the square root of 4608.
x=\frac{-48±48\sqrt{2}}{18}
Multiply 2 times 9.
x=\frac{48\sqrt{2}-48}{18}
Now solve the equation x=\frac{-48±48\sqrt{2}}{18} when ± is plus. Add -48 to 48\sqrt{2}.
x=\frac{8\sqrt{2}-8}{3}
Divide -48+48\sqrt{2} by 18.
x=\frac{-48\sqrt{2}-48}{18}
Now solve the equation x=\frac{-48±48\sqrt{2}}{18} when ± is minus. Subtract 48\sqrt{2} from -48.
x=\frac{-8\sqrt{2}-8}{3}
Divide -48-48\sqrt{2} by 18.
9x^{2}+48x-64=9\left(x-\frac{8\sqrt{2}-8}{3}\right)\left(x-\frac{-8\sqrt{2}-8}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-8+8\sqrt{2}}{3} for x_{1} and \frac{-8-8\sqrt{2}}{3} for x_{2}.