Solve for x
x=\frac{\sqrt{1357}-41}{18}\approx -0.23125106
x=\frac{-\sqrt{1357}-41}{18}\approx -4.324304495
Graph
Share
Copied to clipboard
9x^{2}+41x+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-41±\sqrt{41^{2}-4\times 9\times 9}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 41 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-41±\sqrt{1681-4\times 9\times 9}}{2\times 9}
Square 41.
x=\frac{-41±\sqrt{1681-36\times 9}}{2\times 9}
Multiply -4 times 9.
x=\frac{-41±\sqrt{1681-324}}{2\times 9}
Multiply -36 times 9.
x=\frac{-41±\sqrt{1357}}{2\times 9}
Add 1681 to -324.
x=\frac{-41±\sqrt{1357}}{18}
Multiply 2 times 9.
x=\frac{\sqrt{1357}-41}{18}
Now solve the equation x=\frac{-41±\sqrt{1357}}{18} when ± is plus. Add -41 to \sqrt{1357}.
x=\frac{-\sqrt{1357}-41}{18}
Now solve the equation x=\frac{-41±\sqrt{1357}}{18} when ± is minus. Subtract \sqrt{1357} from -41.
x=\frac{\sqrt{1357}-41}{18} x=\frac{-\sqrt{1357}-41}{18}
The equation is now solved.
9x^{2}+41x+9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}+41x+9-9=-9
Subtract 9 from both sides of the equation.
9x^{2}+41x=-9
Subtracting 9 from itself leaves 0.
\frac{9x^{2}+41x}{9}=-\frac{9}{9}
Divide both sides by 9.
x^{2}+\frac{41}{9}x=-\frac{9}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{41}{9}x=-1
Divide -9 by 9.
x^{2}+\frac{41}{9}x+\left(\frac{41}{18}\right)^{2}=-1+\left(\frac{41}{18}\right)^{2}
Divide \frac{41}{9}, the coefficient of the x term, by 2 to get \frac{41}{18}. Then add the square of \frac{41}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{41}{9}x+\frac{1681}{324}=-1+\frac{1681}{324}
Square \frac{41}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{41}{9}x+\frac{1681}{324}=\frac{1357}{324}
Add -1 to \frac{1681}{324}.
\left(x+\frac{41}{18}\right)^{2}=\frac{1357}{324}
Factor x^{2}+\frac{41}{9}x+\frac{1681}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{41}{18}\right)^{2}}=\sqrt{\frac{1357}{324}}
Take the square root of both sides of the equation.
x+\frac{41}{18}=\frac{\sqrt{1357}}{18} x+\frac{41}{18}=-\frac{\sqrt{1357}}{18}
Simplify.
x=\frac{\sqrt{1357}-41}{18} x=\frac{-\sqrt{1357}-41}{18}
Subtract \frac{41}{18} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}