Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+3x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\times 9\left(-1\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{9-4\times 9\left(-1\right)}}{2\times 9}
Square 3.
x=\frac{-3±\sqrt{9-36\left(-1\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-3±\sqrt{9+36}}{2\times 9}
Multiply -36 times -1.
x=\frac{-3±\sqrt{45}}{2\times 9}
Add 9 to 36.
x=\frac{-3±3\sqrt{5}}{2\times 9}
Take the square root of 45.
x=\frac{-3±3\sqrt{5}}{18}
Multiply 2 times 9.
x=\frac{3\sqrt{5}-3}{18}
Now solve the equation x=\frac{-3±3\sqrt{5}}{18} when ± is plus. Add -3 to 3\sqrt{5}.
x=\frac{\sqrt{5}-1}{6}
Divide -3+3\sqrt{5} by 18.
x=\frac{-3\sqrt{5}-3}{18}
Now solve the equation x=\frac{-3±3\sqrt{5}}{18} when ± is minus. Subtract 3\sqrt{5} from -3.
x=\frac{-\sqrt{5}-1}{6}
Divide -3-3\sqrt{5} by 18.
9x^{2}+3x-1=9\left(x-\frac{\sqrt{5}-1}{6}\right)\left(x-\frac{-\sqrt{5}-1}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1+\sqrt{5}}{6} for x_{1} and \frac{-1-\sqrt{5}}{6} for x_{2}.