Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+18x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-18±\sqrt{18^{2}-4\times 9}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{324-4\times 9}}{2\times 9}
Square 18.
x=\frac{-18±\sqrt{324-36}}{2\times 9}
Multiply -4 times 9.
x=\frac{-18±\sqrt{288}}{2\times 9}
Add 324 to -36.
x=\frac{-18±12\sqrt{2}}{2\times 9}
Take the square root of 288.
x=\frac{-18±12\sqrt{2}}{18}
Multiply 2 times 9.
x=\frac{12\sqrt{2}-18}{18}
Now solve the equation x=\frac{-18±12\sqrt{2}}{18} when ± is plus. Add -18 to 12\sqrt{2}.
x=\frac{2\sqrt{2}}{3}-1
Divide -18+12\sqrt{2} by 18.
x=\frac{-12\sqrt{2}-18}{18}
Now solve the equation x=\frac{-18±12\sqrt{2}}{18} when ± is minus. Subtract 12\sqrt{2} from -18.
x=-\frac{2\sqrt{2}}{3}-1
Divide -18-12\sqrt{2} by 18.
9x^{2}+18x+1=9\left(x-\left(\frac{2\sqrt{2}}{3}-1\right)\right)\left(x-\left(-\frac{2\sqrt{2}}{3}-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1+\frac{2\sqrt{2}}{3} for x_{1} and -1-\frac{2\sqrt{2}}{3} for x_{2}.