Solve for x
x=\frac{2\sqrt{186}-25}{3}\approx 0.758787798
x=\frac{-2\sqrt{186}-25}{3}\approx -17.425454465
Graph
Share
Copied to clipboard
9x^{2}+150x-119=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-150±\sqrt{150^{2}-4\times 9\left(-119\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 150 for b, and -119 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-150±\sqrt{22500-4\times 9\left(-119\right)}}{2\times 9}
Square 150.
x=\frac{-150±\sqrt{22500-36\left(-119\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-150±\sqrt{22500+4284}}{2\times 9}
Multiply -36 times -119.
x=\frac{-150±\sqrt{26784}}{2\times 9}
Add 22500 to 4284.
x=\frac{-150±12\sqrt{186}}{2\times 9}
Take the square root of 26784.
x=\frac{-150±12\sqrt{186}}{18}
Multiply 2 times 9.
x=\frac{12\sqrt{186}-150}{18}
Now solve the equation x=\frac{-150±12\sqrt{186}}{18} when ± is plus. Add -150 to 12\sqrt{186}.
x=\frac{2\sqrt{186}-25}{3}
Divide -150+12\sqrt{186} by 18.
x=\frac{-12\sqrt{186}-150}{18}
Now solve the equation x=\frac{-150±12\sqrt{186}}{18} when ± is minus. Subtract 12\sqrt{186} from -150.
x=\frac{-2\sqrt{186}-25}{3}
Divide -150-12\sqrt{186} by 18.
x=\frac{2\sqrt{186}-25}{3} x=\frac{-2\sqrt{186}-25}{3}
The equation is now solved.
9x^{2}+150x-119=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}+150x-119-\left(-119\right)=-\left(-119\right)
Add 119 to both sides of the equation.
9x^{2}+150x=-\left(-119\right)
Subtracting -119 from itself leaves 0.
9x^{2}+150x=119
Subtract -119 from 0.
\frac{9x^{2}+150x}{9}=\frac{119}{9}
Divide both sides by 9.
x^{2}+\frac{150}{9}x=\frac{119}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{50}{3}x=\frac{119}{9}
Reduce the fraction \frac{150}{9} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{50}{3}x+\left(\frac{25}{3}\right)^{2}=\frac{119}{9}+\left(\frac{25}{3}\right)^{2}
Divide \frac{50}{3}, the coefficient of the x term, by 2 to get \frac{25}{3}. Then add the square of \frac{25}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{50}{3}x+\frac{625}{9}=\frac{119+625}{9}
Square \frac{25}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{50}{3}x+\frac{625}{9}=\frac{248}{3}
Add \frac{119}{9} to \frac{625}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{25}{3}\right)^{2}=\frac{248}{3}
Factor x^{2}+\frac{50}{3}x+\frac{625}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{3}\right)^{2}}=\sqrt{\frac{248}{3}}
Take the square root of both sides of the equation.
x+\frac{25}{3}=\frac{2\sqrt{186}}{3} x+\frac{25}{3}=-\frac{2\sqrt{186}}{3}
Simplify.
x=\frac{2\sqrt{186}-25}{3} x=\frac{-2\sqrt{186}-25}{3}
Subtract \frac{25}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}