Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+12x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 9\left(-2\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\times 9\left(-2\right)}}{2\times 9}
Square 12.
x=\frac{-12±\sqrt{144-36\left(-2\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-12±\sqrt{144+72}}{2\times 9}
Multiply -36 times -2.
x=\frac{-12±\sqrt{216}}{2\times 9}
Add 144 to 72.
x=\frac{-12±6\sqrt{6}}{2\times 9}
Take the square root of 216.
x=\frac{-12±6\sqrt{6}}{18}
Multiply 2 times 9.
x=\frac{6\sqrt{6}-12}{18}
Now solve the equation x=\frac{-12±6\sqrt{6}}{18} when ± is plus. Add -12 to 6\sqrt{6}.
x=\frac{\sqrt{6}-2}{3}
Divide -12+6\sqrt{6} by 18.
x=\frac{-6\sqrt{6}-12}{18}
Now solve the equation x=\frac{-12±6\sqrt{6}}{18} when ± is minus. Subtract 6\sqrt{6} from -12.
x=\frac{-\sqrt{6}-2}{3}
Divide -12-6\sqrt{6} by 18.
9x^{2}+12x-2=9\left(x-\frac{\sqrt{6}-2}{3}\right)\left(x-\frac{-\sqrt{6}-2}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-2+\sqrt{6}}{3} for x_{1} and \frac{-2-\sqrt{6}}{3} for x_{2}.