Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

9a^{4}-34b^{2}a^{2}+25b^{4}
Consider 9a^{4}-34a^{2}b^{2}+25b^{4} as a polynomial over variable a.
\left(9a^{2}-25b^{2}\right)\left(a^{2}-b^{2}\right)
Find one factor of the form ka^{m}+n, where ka^{m} divides the monomial with the highest power 9a^{4} and n divides the constant factor 25b^{4}. One such factor is 9a^{2}-25b^{2}. Factor the polynomial by dividing it by this factor.
\left(3a-5b\right)\left(3a+5b\right)
Consider 9a^{2}-25b^{2}. Rewrite 9a^{2}-25b^{2} as \left(3a\right)^{2}-\left(5b\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-b\right)\left(a+b\right)
Consider a^{2}-b^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-b\right)\left(a+b\right)\left(3a-5b\right)\left(3a+5b\right)
Rewrite the complete factored expression.