Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9\left(9x^{2}+6x+1\right)-64=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
81x^{2}+54x+9-64=0
Use the distributive property to multiply 9 by 9x^{2}+6x+1.
81x^{2}+54x-55=0
Subtract 64 from 9 to get -55.
a+b=54 ab=81\left(-55\right)=-4455
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 81x^{2}+ax+bx-55. To find a and b, set up a system to be solved.
-1,4455 -3,1485 -5,891 -9,495 -11,405 -15,297 -27,165 -33,135 -45,99 -55,81
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -4455.
-1+4455=4454 -3+1485=1482 -5+891=886 -9+495=486 -11+405=394 -15+297=282 -27+165=138 -33+135=102 -45+99=54 -55+81=26
Calculate the sum for each pair.
a=-45 b=99
The solution is the pair that gives sum 54.
\left(81x^{2}-45x\right)+\left(99x-55\right)
Rewrite 81x^{2}+54x-55 as \left(81x^{2}-45x\right)+\left(99x-55\right).
9x\left(9x-5\right)+11\left(9x-5\right)
Factor out 9x in the first and 11 in the second group.
\left(9x-5\right)\left(9x+11\right)
Factor out common term 9x-5 by using distributive property.
x=\frac{5}{9} x=-\frac{11}{9}
To find equation solutions, solve 9x-5=0 and 9x+11=0.
9\left(9x^{2}+6x+1\right)-64=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
81x^{2}+54x+9-64=0
Use the distributive property to multiply 9 by 9x^{2}+6x+1.
81x^{2}+54x-55=0
Subtract 64 from 9 to get -55.
x=\frac{-54±\sqrt{54^{2}-4\times 81\left(-55\right)}}{2\times 81}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 81 for a, 54 for b, and -55 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-54±\sqrt{2916-4\times 81\left(-55\right)}}{2\times 81}
Square 54.
x=\frac{-54±\sqrt{2916-324\left(-55\right)}}{2\times 81}
Multiply -4 times 81.
x=\frac{-54±\sqrt{2916+17820}}{2\times 81}
Multiply -324 times -55.
x=\frac{-54±\sqrt{20736}}{2\times 81}
Add 2916 to 17820.
x=\frac{-54±144}{2\times 81}
Take the square root of 20736.
x=\frac{-54±144}{162}
Multiply 2 times 81.
x=\frac{90}{162}
Now solve the equation x=\frac{-54±144}{162} when ± is plus. Add -54 to 144.
x=\frac{5}{9}
Reduce the fraction \frac{90}{162} to lowest terms by extracting and canceling out 18.
x=-\frac{198}{162}
Now solve the equation x=\frac{-54±144}{162} when ± is minus. Subtract 144 from -54.
x=-\frac{11}{9}
Reduce the fraction \frac{-198}{162} to lowest terms by extracting and canceling out 18.
x=\frac{5}{9} x=-\frac{11}{9}
The equation is now solved.
9\left(9x^{2}+6x+1\right)-64=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
81x^{2}+54x+9-64=0
Use the distributive property to multiply 9 by 9x^{2}+6x+1.
81x^{2}+54x-55=0
Subtract 64 from 9 to get -55.
81x^{2}+54x=55
Add 55 to both sides. Anything plus zero gives itself.
\frac{81x^{2}+54x}{81}=\frac{55}{81}
Divide both sides by 81.
x^{2}+\frac{54}{81}x=\frac{55}{81}
Dividing by 81 undoes the multiplication by 81.
x^{2}+\frac{2}{3}x=\frac{55}{81}
Reduce the fraction \frac{54}{81} to lowest terms by extracting and canceling out 27.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{55}{81}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{55}{81}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{64}{81}
Add \frac{55}{81} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=\frac{64}{81}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{64}{81}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{8}{9} x+\frac{1}{3}=-\frac{8}{9}
Simplify.
x=\frac{5}{9} x=-\frac{11}{9}
Subtract \frac{1}{3} from both sides of the equation.