Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

72x^{2}=10
Multiply 9 and 8 to get 72.
x^{2}=\frac{10}{72}
Divide both sides by 72.
x^{2}=\frac{5}{36}
Reduce the fraction \frac{10}{72} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{5}}{6} x=-\frac{\sqrt{5}}{6}
Take the square root of both sides of the equation.
72x^{2}=10
Multiply 9 and 8 to get 72.
72x^{2}-10=0
Subtract 10 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 72\left(-10\right)}}{2\times 72}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 72 for a, 0 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 72\left(-10\right)}}{2\times 72}
Square 0.
x=\frac{0±\sqrt{-288\left(-10\right)}}{2\times 72}
Multiply -4 times 72.
x=\frac{0±\sqrt{2880}}{2\times 72}
Multiply -288 times -10.
x=\frac{0±24\sqrt{5}}{2\times 72}
Take the square root of 2880.
x=\frac{0±24\sqrt{5}}{144}
Multiply 2 times 72.
x=\frac{\sqrt{5}}{6}
Now solve the equation x=\frac{0±24\sqrt{5}}{144} when ± is plus.
x=-\frac{\sqrt{5}}{6}
Now solve the equation x=\frac{0±24\sqrt{5}}{144} when ± is minus.
x=\frac{\sqrt{5}}{6} x=-\frac{\sqrt{5}}{6}
The equation is now solved.