Evaluate
\frac{47501}{475}\approx 100.002105263
Factor
\frac{47501}{19 \cdot 5 ^ {2}} = 100\frac{1}{475} = 100.0021052631579
Share
Copied to clipboard
\frac{612}{95}+100-6.44
Multiply 9 and 68 to get 612.
\frac{612}{95}+\frac{9500}{95}-6.44
Convert 100 to fraction \frac{9500}{95}.
\frac{612+9500}{95}-6.44
Since \frac{612}{95} and \frac{9500}{95} have the same denominator, add them by adding their numerators.
\frac{10112}{95}-6.44
Add 612 and 9500 to get 10112.
\frac{10112}{95}-\frac{161}{25}
Convert decimal number 6.44 to fraction \frac{644}{100}. Reduce the fraction \frac{644}{100} to lowest terms by extracting and canceling out 4.
\frac{50560}{475}-\frac{3059}{475}
Least common multiple of 95 and 25 is 475. Convert \frac{10112}{95} and \frac{161}{25} to fractions with denominator 475.
\frac{50560-3059}{475}
Since \frac{50560}{475} and \frac{3059}{475} have the same denominator, subtract them by subtracting their numerators.
\frac{47501}{475}
Subtract 3059 from 50560 to get 47501.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}