Solve for y
y=-\frac{3\sqrt{805}i}{115}\approx -0-0.740152746i
y=\frac{3\sqrt{805}i}{115}\approx 0.740152746i
Share
Copied to clipboard
9\times \left(\frac{3}{7}\right)^{2}y^{2}-\left(2y\right)^{2}=3\times \frac{3}{7}
Expand \left(\frac{3}{7}y\right)^{2}.
9\times \frac{9}{49}y^{2}-\left(2y\right)^{2}=3\times \frac{3}{7}
Calculate \frac{3}{7} to the power of 2 and get \frac{9}{49}.
\frac{81}{49}y^{2}-\left(2y\right)^{2}=3\times \frac{3}{7}
Multiply 9 and \frac{9}{49} to get \frac{81}{49}.
\frac{81}{49}y^{2}-2^{2}y^{2}=3\times \frac{3}{7}
Expand \left(2y\right)^{2}.
\frac{81}{49}y^{2}-4y^{2}=3\times \frac{3}{7}
Calculate 2 to the power of 2 and get 4.
-\frac{115}{49}y^{2}=3\times \frac{3}{7}
Combine \frac{81}{49}y^{2} and -4y^{2} to get -\frac{115}{49}y^{2}.
-\frac{115}{49}y^{2}=\frac{9}{7}
Multiply 3 and \frac{3}{7} to get \frac{9}{7}.
y^{2}=\frac{9}{7}\left(-\frac{49}{115}\right)
Multiply both sides by -\frac{49}{115}, the reciprocal of -\frac{115}{49}.
y^{2}=-\frac{63}{115}
Multiply \frac{9}{7} and -\frac{49}{115} to get -\frac{63}{115}.
y=\frac{3\sqrt{805}i}{115} y=-\frac{3\sqrt{805}i}{115}
The equation is now solved.
9\times \left(\frac{3}{7}\right)^{2}y^{2}-\left(2y\right)^{2}=3\times \frac{3}{7}
Expand \left(\frac{3}{7}y\right)^{2}.
9\times \frac{9}{49}y^{2}-\left(2y\right)^{2}=3\times \frac{3}{7}
Calculate \frac{3}{7} to the power of 2 and get \frac{9}{49}.
\frac{81}{49}y^{2}-\left(2y\right)^{2}=3\times \frac{3}{7}
Multiply 9 and \frac{9}{49} to get \frac{81}{49}.
\frac{81}{49}y^{2}-2^{2}y^{2}=3\times \frac{3}{7}
Expand \left(2y\right)^{2}.
\frac{81}{49}y^{2}-4y^{2}=3\times \frac{3}{7}
Calculate 2 to the power of 2 and get 4.
-\frac{115}{49}y^{2}=3\times \frac{3}{7}
Combine \frac{81}{49}y^{2} and -4y^{2} to get -\frac{115}{49}y^{2}.
-\frac{115}{49}y^{2}=\frac{9}{7}
Multiply 3 and \frac{3}{7} to get \frac{9}{7}.
-\frac{115}{49}y^{2}-\frac{9}{7}=0
Subtract \frac{9}{7} from both sides.
y=\frac{0±\sqrt{0^{2}-4\left(-\frac{115}{49}\right)\left(-\frac{9}{7}\right)}}{2\left(-\frac{115}{49}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{115}{49} for a, 0 for b, and -\frac{9}{7} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-\frac{115}{49}\right)\left(-\frac{9}{7}\right)}}{2\left(-\frac{115}{49}\right)}
Square 0.
y=\frac{0±\sqrt{\frac{460}{49}\left(-\frac{9}{7}\right)}}{2\left(-\frac{115}{49}\right)}
Multiply -4 times -\frac{115}{49}.
y=\frac{0±\sqrt{-\frac{4140}{343}}}{2\left(-\frac{115}{49}\right)}
Multiply \frac{460}{49} times -\frac{9}{7} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{0±\frac{6\sqrt{805}i}{49}}{2\left(-\frac{115}{49}\right)}
Take the square root of -\frac{4140}{343}.
y=\frac{0±\frac{6\sqrt{805}i}{49}}{-\frac{230}{49}}
Multiply 2 times -\frac{115}{49}.
y=-\frac{3\sqrt{805}i}{115}
Now solve the equation y=\frac{0±\frac{6\sqrt{805}i}{49}}{-\frac{230}{49}} when ± is plus.
y=\frac{3\sqrt{805}i}{115}
Now solve the equation y=\frac{0±\frac{6\sqrt{805}i}{49}}{-\frac{230}{49}} when ± is minus.
y=-\frac{3\sqrt{805}i}{115} y=\frac{3\sqrt{805}i}{115}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}