Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

9\times 5\sqrt{3}+\sqrt{\frac{2\times 2+1}{2}}\times \frac{3}{2}\sqrt{\frac{2\times 3+2}{3}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
45\sqrt{3}+\sqrt{\frac{2\times 2+1}{2}}\times \frac{3}{2}\sqrt{\frac{2\times 3+2}{3}}
Multiply 9 and 5 to get 45.
45\sqrt{3}+\sqrt{\frac{4+1}{2}}\times \frac{3}{2}\sqrt{\frac{2\times 3+2}{3}}
Multiply 2 and 2 to get 4.
45\sqrt{3}+\sqrt{\frac{5}{2}}\times \frac{3}{2}\sqrt{\frac{2\times 3+2}{3}}
Add 4 and 1 to get 5.
45\sqrt{3}+\frac{\sqrt{5}}{\sqrt{2}}\times \frac{3}{2}\sqrt{\frac{2\times 3+2}{3}}
Rewrite the square root of the division \sqrt{\frac{5}{2}} as the division of square roots \frac{\sqrt{5}}{\sqrt{2}}.
45\sqrt{3}+\frac{\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\times \frac{3}{2}\sqrt{\frac{2\times 3+2}{3}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
45\sqrt{3}+\frac{\sqrt{5}\sqrt{2}}{2}\times \frac{3}{2}\sqrt{\frac{2\times 3+2}{3}}
The square of \sqrt{2} is 2.
45\sqrt{3}+\frac{\sqrt{10}}{2}\times \frac{3}{2}\sqrt{\frac{2\times 3+2}{3}}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
45\sqrt{3}+\frac{\sqrt{10}}{2}\times \frac{3}{2}\sqrt{\frac{6+2}{3}}
Multiply 2 and 3 to get 6.
45\sqrt{3}+\frac{\sqrt{10}}{2}\times \frac{3}{2}\sqrt{\frac{8}{3}}
Add 6 and 2 to get 8.
45\sqrt{3}+\frac{\sqrt{10}}{2}\times \frac{3}{2}\times \frac{\sqrt{8}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{8}{3}} as the division of square roots \frac{\sqrt{8}}{\sqrt{3}}.
45\sqrt{3}+\frac{\sqrt{10}}{2}\times \frac{3}{2}\times \frac{2\sqrt{2}}{\sqrt{3}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
45\sqrt{3}+\frac{\sqrt{10}}{2}\times \frac{3}{2}\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
45\sqrt{3}+\frac{\sqrt{10}}{2}\times \frac{3}{2}\times \frac{2\sqrt{2}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
45\sqrt{3}+\frac{\sqrt{10}}{2}\times \frac{3}{2}\times \frac{2\sqrt{6}}{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
45\sqrt{3}+\frac{\sqrt{10}\times 3}{2\times 2}\times \frac{2\sqrt{6}}{3}
Multiply \frac{\sqrt{10}}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
45\sqrt{3}+\frac{\sqrt{10}\times 3\times 2\sqrt{6}}{2\times 2\times 3}
Multiply \frac{\sqrt{10}\times 3}{2\times 2} times \frac{2\sqrt{6}}{3} by multiplying numerator times numerator and denominator times denominator.
45\sqrt{3}+\frac{\sqrt{6}\sqrt{10}}{2}
Cancel out 2\times 3 in both numerator and denominator.
\frac{2\times 45\sqrt{3}}{2}+\frac{\sqrt{6}\sqrt{10}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 45\sqrt{3} times \frac{2}{2}.
\frac{2\times 45\sqrt{3}+\sqrt{6}\sqrt{10}}{2}
Since \frac{2\times 45\sqrt{3}}{2} and \frac{\sqrt{6}\sqrt{10}}{2} have the same denominator, add them by adding their numerators.
\frac{90\sqrt{3}+2\sqrt{15}}{2}
Do the multiplications in 2\times 45\sqrt{3}+\sqrt{6}\sqrt{10}.
45\sqrt{3}+\sqrt{15}
Divide each term of 90\sqrt{3}+2\sqrt{15} by 2 to get 45\sqrt{3}+\sqrt{15}.