Evaluate
9\left(\sqrt{21}-3\sqrt{5}\right)\approx -19.130654138
Share
Copied to clipboard
9\sqrt{3}\sqrt{7}-9\sqrt{3}\sqrt{15}
Use the distributive property to multiply 9\sqrt{3} by \sqrt{7}-\sqrt{15}.
9\sqrt{21}-9\sqrt{3}\sqrt{15}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
9\sqrt{21}-9\sqrt{3}\sqrt{3}\sqrt{5}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
9\sqrt{21}-9\times 3\sqrt{5}
Multiply \sqrt{3} and \sqrt{3} to get 3.
9\sqrt{21}-27\sqrt{5}
Multiply -9 and 3 to get -27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}