Evaluate
-\frac{3\sqrt{5}}{7}\approx -0.958314847
Share
Copied to clipboard
\frac{9\times \frac{\sqrt{5}}{\sqrt{48}}}{-\frac{3}{2}\sqrt{\frac{4\times 12+1}{12}}}
Rewrite the square root of the division \sqrt{\frac{5}{48}} as the division of square roots \frac{\sqrt{5}}{\sqrt{48}}.
\frac{9\times \frac{\sqrt{5}}{4\sqrt{3}}}{-\frac{3}{2}\sqrt{\frac{4\times 12+1}{12}}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{9\times \frac{\sqrt{5}\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}}{-\frac{3}{2}\sqrt{\frac{4\times 12+1}{12}}}
Rationalize the denominator of \frac{\sqrt{5}}{4\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{9\times \frac{\sqrt{5}\sqrt{3}}{4\times 3}}{-\frac{3}{2}\sqrt{\frac{4\times 12+1}{12}}}
The square of \sqrt{3} is 3.
\frac{9\times \frac{\sqrt{15}}{4\times 3}}{-\frac{3}{2}\sqrt{\frac{4\times 12+1}{12}}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{9\times \frac{\sqrt{15}}{12}}{-\frac{3}{2}\sqrt{\frac{4\times 12+1}{12}}}
Multiply 4 and 3 to get 12.
\frac{\frac{9\sqrt{15}}{12}}{-\frac{3}{2}\sqrt{\frac{4\times 12+1}{12}}}
Express 9\times \frac{\sqrt{15}}{12} as a single fraction.
\frac{\frac{9\sqrt{15}}{12}}{-\frac{3}{2}\sqrt{\frac{48+1}{12}}}
Multiply 4 and 12 to get 48.
\frac{\frac{9\sqrt{15}}{12}}{-\frac{3}{2}\sqrt{\frac{49}{12}}}
Add 48 and 1 to get 49.
\frac{\frac{9\sqrt{15}}{12}}{-\frac{3}{2}\times \frac{\sqrt{49}}{\sqrt{12}}}
Rewrite the square root of the division \sqrt{\frac{49}{12}} as the division of square roots \frac{\sqrt{49}}{\sqrt{12}}.
\frac{\frac{9\sqrt{15}}{12}}{-\frac{3}{2}\times \frac{7}{\sqrt{12}}}
Calculate the square root of 49 and get 7.
\frac{\frac{9\sqrt{15}}{12}}{-\frac{3}{2}\times \frac{7}{2\sqrt{3}}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\frac{9\sqrt{15}}{12}}{-\frac{3}{2}\times \frac{7\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{7}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{9\sqrt{15}}{12}}{-\frac{3}{2}\times \frac{7\sqrt{3}}{2\times 3}}
The square of \sqrt{3} is 3.
\frac{\frac{9\sqrt{15}}{12}}{-\frac{3}{2}\times \frac{7\sqrt{3}}{6}}
Multiply 2 and 3 to get 6.
\frac{\frac{9\sqrt{15}}{12}}{\frac{-3\times 7\sqrt{3}}{2\times 6}}
Multiply -\frac{3}{2} times \frac{7\sqrt{3}}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{9\sqrt{15}}{12}}{\frac{-7\sqrt{3}}{2\times 2}}
Cancel out 3 in both numerator and denominator.
\frac{9\sqrt{15}\times 2\times 2}{12\left(-1\right)\times 7\sqrt{3}}
Divide \frac{9\sqrt{15}}{12} by \frac{-7\sqrt{3}}{2\times 2} by multiplying \frac{9\sqrt{15}}{12} by the reciprocal of \frac{-7\sqrt{3}}{2\times 2}.
\frac{3\sqrt{15}}{-7\sqrt{3}}
Cancel out 2\times 2\times 3 in both numerator and denominator.
\frac{-3\sqrt{15}}{7\sqrt{3}}
Cancel out -1 in both numerator and denominator.
\frac{-3\sqrt{15}\sqrt{3}}{7\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{-3\sqrt{15}}{7\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{-3\sqrt{15}\sqrt{3}}{7\times 3}
The square of \sqrt{3} is 3.
\frac{-3\sqrt{3}\sqrt{5}\sqrt{3}}{7\times 3}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{-3\times 3\sqrt{5}}{7\times 3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{-3\times 3\sqrt{5}}{21}
Multiply 7 and 3 to get 21.
-\frac{1}{7}\times 3\sqrt{5}
Divide -3\times 3\sqrt{5} by 21 to get -\frac{1}{7}\times 3\sqrt{5}.
\frac{-3}{7}\sqrt{5}
Express -\frac{1}{7}\times 3 as a single fraction.
-\frac{3}{7}\sqrt{5}
Fraction \frac{-3}{7} can be rewritten as -\frac{3}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}