Solve for x
x = \frac{3 \sqrt{510}}{5} \approx 13.549907749
x = -\frac{3 \sqrt{510}}{5} \approx -13.549907749
Graph
Share
Copied to clipboard
81\times \frac{8x+102.6}{9-0\times 3x}+729=9x^{2}+72x
Multiply both sides of the equation by 9.
81\times \frac{8x+102.6}{9-0x}+729=9x^{2}+72x
Multiply 0 and 3 to get 0.
81\times \frac{8x+102.6}{9-0}+729=9x^{2}+72x
Anything times zero gives zero.
81\times \frac{8x+102.6}{9}+729=9x^{2}+72x
Subtract 0 from 9 to get 9.
81\left(\frac{8}{9}x+11.4\right)+729=9x^{2}+72x
Divide each term of 8x+102.6 by 9 to get \frac{8}{9}x+11.4.
72x+923.4+729=9x^{2}+72x
Use the distributive property to multiply 81 by \frac{8}{9}x+11.4.
72x+1652.4=9x^{2}+72x
Add 923.4 and 729 to get 1652.4.
72x+1652.4-9x^{2}=72x
Subtract 9x^{2} from both sides.
72x+1652.4-9x^{2}-72x=0
Subtract 72x from both sides.
1652.4-9x^{2}=0
Combine 72x and -72x to get 0.
-9x^{2}=-1652.4
Subtract 1652.4 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-1652.4}{-9}
Divide both sides by -9.
x^{2}=\frac{-16524}{-90}
Expand \frac{-1652.4}{-9} by multiplying both numerator and the denominator by 10.
x^{2}=\frac{918}{5}
Reduce the fraction \frac{-16524}{-90} to lowest terms by extracting and canceling out -18.
x=\frac{3\sqrt{510}}{5} x=-\frac{3\sqrt{510}}{5}
Take the square root of both sides of the equation.
81\times \frac{8x+102.6}{9-0\times 3x}+729=9x^{2}+72x
Multiply both sides of the equation by 9.
81\times \frac{8x+102.6}{9-0x}+729=9x^{2}+72x
Multiply 0 and 3 to get 0.
81\times \frac{8x+102.6}{9-0}+729=9x^{2}+72x
Anything times zero gives zero.
81\times \frac{8x+102.6}{9}+729=9x^{2}+72x
Subtract 0 from 9 to get 9.
81\left(\frac{8}{9}x+11.4\right)+729=9x^{2}+72x
Divide each term of 8x+102.6 by 9 to get \frac{8}{9}x+11.4.
72x+923.4+729=9x^{2}+72x
Use the distributive property to multiply 81 by \frac{8}{9}x+11.4.
72x+1652.4=9x^{2}+72x
Add 923.4 and 729 to get 1652.4.
72x+1652.4-9x^{2}=72x
Subtract 9x^{2} from both sides.
72x+1652.4-9x^{2}-72x=0
Subtract 72x from both sides.
1652.4-9x^{2}=0
Combine 72x and -72x to get 0.
-9x^{2}+1652.4=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-9\right)\times 1652.4}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 0 for b, and 1652.4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-9\right)\times 1652.4}}{2\left(-9\right)}
Square 0.
x=\frac{0±\sqrt{36\times 1652.4}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{0±\sqrt{59486.4}}{2\left(-9\right)}
Multiply 36 times 1652.4.
x=\frac{0±\frac{54\sqrt{510}}{5}}{2\left(-9\right)}
Take the square root of 59486.4.
x=\frac{0±\frac{54\sqrt{510}}{5}}{-18}
Multiply 2 times -9.
x=-\frac{3\sqrt{510}}{5}
Now solve the equation x=\frac{0±\frac{54\sqrt{510}}{5}}{-18} when ± is plus.
x=\frac{3\sqrt{510}}{5}
Now solve the equation x=\frac{0±\frac{54\sqrt{510}}{5}}{-18} when ± is minus.
x=-\frac{3\sqrt{510}}{5} x=\frac{3\sqrt{510}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}