Evaluate
\frac{451}{20}=22.55
Factor
\frac{11 \cdot 41}{2 ^ {2} \cdot 5} = 22\frac{11}{20} = 22.55
Share
Copied to clipboard
\frac{45+4}{5}+\frac{3\times 4+1}{4}+\frac{9\times 2+1}{2}
Multiply 9 and 5 to get 45.
\frac{49}{5}+\frac{3\times 4+1}{4}+\frac{9\times 2+1}{2}
Add 45 and 4 to get 49.
\frac{49}{5}+\frac{12+1}{4}+\frac{9\times 2+1}{2}
Multiply 3 and 4 to get 12.
\frac{49}{5}+\frac{13}{4}+\frac{9\times 2+1}{2}
Add 12 and 1 to get 13.
\frac{196}{20}+\frac{65}{20}+\frac{9\times 2+1}{2}
Least common multiple of 5 and 4 is 20. Convert \frac{49}{5} and \frac{13}{4} to fractions with denominator 20.
\frac{196+65}{20}+\frac{9\times 2+1}{2}
Since \frac{196}{20} and \frac{65}{20} have the same denominator, add them by adding their numerators.
\frac{261}{20}+\frac{9\times 2+1}{2}
Add 196 and 65 to get 261.
\frac{261}{20}+\frac{18+1}{2}
Multiply 9 and 2 to get 18.
\frac{261}{20}+\frac{19}{2}
Add 18 and 1 to get 19.
\frac{261}{20}+\frac{190}{20}
Least common multiple of 20 and 2 is 20. Convert \frac{261}{20} and \frac{19}{2} to fractions with denominator 20.
\frac{261+190}{20}
Since \frac{261}{20} and \frac{190}{20} have the same denominator, add them by adding their numerators.
\frac{451}{20}
Add 261 and 190 to get 451.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}