Solve for x
x = \frac{\sqrt{310}}{5} \approx 3.521363372
x = -\frac{\sqrt{310}}{5} \approx -3.521363372
Graph
Share
Copied to clipboard
6\left(9\times 10+6\right)-5\times 6x^{2}=6\left(3\times 10+4\right)
Multiply both sides of the equation by 60, the least common multiple of 10,12.
6\left(90+6\right)-5\times 6x^{2}=6\left(3\times 10+4\right)
Multiply 9 and 10 to get 90.
6\times 96-5\times 6x^{2}=6\left(3\times 10+4\right)
Add 90 and 6 to get 96.
576-5\times 6x^{2}=6\left(3\times 10+4\right)
Multiply 6 and 96 to get 576.
576-30x^{2}=6\left(3\times 10+4\right)
Multiply -5 and 6 to get -30.
576-30x^{2}=6\left(30+4\right)
Multiply 3 and 10 to get 30.
576-30x^{2}=6\times 34
Add 30 and 4 to get 34.
576-30x^{2}=204
Multiply 6 and 34 to get 204.
-30x^{2}=204-576
Subtract 576 from both sides.
-30x^{2}=-372
Subtract 576 from 204 to get -372.
x^{2}=\frac{-372}{-30}
Divide both sides by -30.
x^{2}=\frac{62}{5}
Reduce the fraction \frac{-372}{-30} to lowest terms by extracting and canceling out -6.
x=\frac{\sqrt{310}}{5} x=-\frac{\sqrt{310}}{5}
Take the square root of both sides of the equation.
6\left(9\times 10+6\right)-5\times 6x^{2}=6\left(3\times 10+4\right)
Multiply both sides of the equation by 60, the least common multiple of 10,12.
6\left(90+6\right)-5\times 6x^{2}=6\left(3\times 10+4\right)
Multiply 9 and 10 to get 90.
6\times 96-5\times 6x^{2}=6\left(3\times 10+4\right)
Add 90 and 6 to get 96.
576-5\times 6x^{2}=6\left(3\times 10+4\right)
Multiply 6 and 96 to get 576.
576-30x^{2}=6\left(3\times 10+4\right)
Multiply -5 and 6 to get -30.
576-30x^{2}=6\left(30+4\right)
Multiply 3 and 10 to get 30.
576-30x^{2}=6\times 34
Add 30 and 4 to get 34.
576-30x^{2}=204
Multiply 6 and 34 to get 204.
576-30x^{2}-204=0
Subtract 204 from both sides.
372-30x^{2}=0
Subtract 204 from 576 to get 372.
-30x^{2}+372=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-30\right)\times 372}}{2\left(-30\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -30 for a, 0 for b, and 372 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-30\right)\times 372}}{2\left(-30\right)}
Square 0.
x=\frac{0±\sqrt{120\times 372}}{2\left(-30\right)}
Multiply -4 times -30.
x=\frac{0±\sqrt{44640}}{2\left(-30\right)}
Multiply 120 times 372.
x=\frac{0±12\sqrt{310}}{2\left(-30\right)}
Take the square root of 44640.
x=\frac{0±12\sqrt{310}}{-60}
Multiply 2 times -30.
x=-\frac{\sqrt{310}}{5}
Now solve the equation x=\frac{0±12\sqrt{310}}{-60} when ± is plus.
x=\frac{\sqrt{310}}{5}
Now solve the equation x=\frac{0±12\sqrt{310}}{-60} when ± is minus.
x=-\frac{\sqrt{310}}{5} x=\frac{\sqrt{310}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}