Evaluate
\frac{3521}{240}\approx 14.670833333
Factor
\frac{7 \cdot 503}{2 ^ {4} \cdot 3 \cdot 5} = 14\frac{161}{240} = 14.670833333333333
Quiz
Arithmetic
5 problems similar to:
9 \frac { 2 } { 3 } + 5 \frac { 1 } { 48 } - \frac { 1 } { 60 }
Share
Copied to clipboard
\frac{27+2}{3}+\frac{5\times 48+1}{48}-\frac{1}{60}
Multiply 9 and 3 to get 27.
\frac{29}{3}+\frac{5\times 48+1}{48}-\frac{1}{60}
Add 27 and 2 to get 29.
\frac{29}{3}+\frac{240+1}{48}-\frac{1}{60}
Multiply 5 and 48 to get 240.
\frac{29}{3}+\frac{241}{48}-\frac{1}{60}
Add 240 and 1 to get 241.
\frac{464}{48}+\frac{241}{48}-\frac{1}{60}
Least common multiple of 3 and 48 is 48. Convert \frac{29}{3} and \frac{241}{48} to fractions with denominator 48.
\frac{464+241}{48}-\frac{1}{60}
Since \frac{464}{48} and \frac{241}{48} have the same denominator, add them by adding their numerators.
\frac{705}{48}-\frac{1}{60}
Add 464 and 241 to get 705.
\frac{235}{16}-\frac{1}{60}
Reduce the fraction \frac{705}{48} to lowest terms by extracting and canceling out 3.
\frac{3525}{240}-\frac{4}{240}
Least common multiple of 16 and 60 is 240. Convert \frac{235}{16} and \frac{1}{60} to fractions with denominator 240.
\frac{3525-4}{240}
Since \frac{3525}{240} and \frac{4}{240} have the same denominator, subtract them by subtracting their numerators.
\frac{3521}{240}
Subtract 4 from 3525 to get 3521.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}