Evaluate
\frac{4438}{225}\approx 19.724444444
Factor
\frac{2 \cdot 7 \cdot 317}{3 ^ {2} \cdot 5 ^ {2}} = 19\frac{163}{225} = 19.724444444444444
Share
Copied to clipboard
\frac{135+11}{15}+\frac{9\times 5+3}{5}+\frac{11}{15}\times \frac{8}{15}
Multiply 9 and 15 to get 135.
\frac{146}{15}+\frac{9\times 5+3}{5}+\frac{11}{15}\times \frac{8}{15}
Add 135 and 11 to get 146.
\frac{146}{15}+\frac{45+3}{5}+\frac{11}{15}\times \frac{8}{15}
Multiply 9 and 5 to get 45.
\frac{146}{15}+\frac{48}{5}+\frac{11}{15}\times \frac{8}{15}
Add 45 and 3 to get 48.
\frac{146}{15}+\frac{144}{15}+\frac{11}{15}\times \frac{8}{15}
Least common multiple of 15 and 5 is 15. Convert \frac{146}{15} and \frac{48}{5} to fractions with denominator 15.
\frac{146+144}{15}+\frac{11}{15}\times \frac{8}{15}
Since \frac{146}{15} and \frac{144}{15} have the same denominator, add them by adding their numerators.
\frac{290}{15}+\frac{11}{15}\times \frac{8}{15}
Add 146 and 144 to get 290.
\frac{58}{3}+\frac{11}{15}\times \frac{8}{15}
Reduce the fraction \frac{290}{15} to lowest terms by extracting and canceling out 5.
\frac{58}{3}+\frac{11\times 8}{15\times 15}
Multiply \frac{11}{15} times \frac{8}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{58}{3}+\frac{88}{225}
Do the multiplications in the fraction \frac{11\times 8}{15\times 15}.
\frac{4350}{225}+\frac{88}{225}
Least common multiple of 3 and 225 is 225. Convert \frac{58}{3} and \frac{88}{225} to fractions with denominator 225.
\frac{4350+88}{225}
Since \frac{4350}{225} and \frac{88}{225} have the same denominator, add them by adding their numerators.
\frac{4438}{225}
Add 4350 and 88 to get 4438.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}