Evaluate
\frac{1499}{120}\approx 12.491666667
Factor
\frac{1499}{2 ^ {3} \cdot 3 \cdot 5} = 12\frac{59}{120} = 12.491666666666667
Share
Copied to clipboard
\frac{72+1}{8}+\frac{2\times 6+4}{6}+\frac{7}{10}
Multiply 9 and 8 to get 72.
\frac{73}{8}+\frac{2\times 6+4}{6}+\frac{7}{10}
Add 72 and 1 to get 73.
\frac{73}{8}+\frac{12+4}{6}+\frac{7}{10}
Multiply 2 and 6 to get 12.
\frac{73}{8}+\frac{16}{6}+\frac{7}{10}
Add 12 and 4 to get 16.
\frac{73}{8}+\frac{8}{3}+\frac{7}{10}
Reduce the fraction \frac{16}{6} to lowest terms by extracting and canceling out 2.
\frac{219}{24}+\frac{64}{24}+\frac{7}{10}
Least common multiple of 8 and 3 is 24. Convert \frac{73}{8} and \frac{8}{3} to fractions with denominator 24.
\frac{219+64}{24}+\frac{7}{10}
Since \frac{219}{24} and \frac{64}{24} have the same denominator, add them by adding their numerators.
\frac{283}{24}+\frac{7}{10}
Add 219 and 64 to get 283.
\frac{1415}{120}+\frac{84}{120}
Least common multiple of 24 and 10 is 120. Convert \frac{283}{24} and \frac{7}{10} to fractions with denominator 120.
\frac{1415+84}{120}
Since \frac{1415}{120} and \frac{84}{120} have the same denominator, add them by adding their numerators.
\frac{1499}{120}
Add 1415 and 84 to get 1499.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}