Evaluate
\frac{141}{20}=7.05
Factor
\frac{3 \cdot 47}{2 ^ {2} \cdot 5} = 7\frac{1}{20} = 7.05
Share
Copied to clipboard
9\left(\frac{4}{36}+\frac{27}{36}\right)-\frac{1}{\frac{5}{6}}\times \frac{28}{48}
Least common multiple of 9 and 4 is 36. Convert \frac{1}{9} and \frac{3}{4} to fractions with denominator 36.
9\times \frac{4+27}{36}-\frac{1}{\frac{5}{6}}\times \frac{28}{48}
Since \frac{4}{36} and \frac{27}{36} have the same denominator, add them by adding their numerators.
9\times \frac{31}{36}-\frac{1}{\frac{5}{6}}\times \frac{28}{48}
Add 4 and 27 to get 31.
\frac{9\times 31}{36}-\frac{1}{\frac{5}{6}}\times \frac{28}{48}
Express 9\times \frac{31}{36} as a single fraction.
\frac{279}{36}-\frac{1}{\frac{5}{6}}\times \frac{28}{48}
Multiply 9 and 31 to get 279.
\frac{31}{4}-\frac{1}{\frac{5}{6}}\times \frac{28}{48}
Reduce the fraction \frac{279}{36} to lowest terms by extracting and canceling out 9.
\frac{31}{4}-1\times \frac{6}{5}\times \frac{28}{48}
Divide 1 by \frac{5}{6} by multiplying 1 by the reciprocal of \frac{5}{6}.
\frac{31}{4}-\frac{6}{5}\times \frac{28}{48}
Multiply 1 and \frac{6}{5} to get \frac{6}{5}.
\frac{31}{4}-\frac{6}{5}\times \frac{7}{12}
Reduce the fraction \frac{28}{48} to lowest terms by extracting and canceling out 4.
\frac{31}{4}-\frac{6\times 7}{5\times 12}
Multiply \frac{6}{5} times \frac{7}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{31}{4}-\frac{42}{60}
Do the multiplications in the fraction \frac{6\times 7}{5\times 12}.
\frac{31}{4}-\frac{7}{10}
Reduce the fraction \frac{42}{60} to lowest terms by extracting and canceling out 6.
\frac{155}{20}-\frac{14}{20}
Least common multiple of 4 and 10 is 20. Convert \frac{31}{4} and \frac{7}{10} to fractions with denominator 20.
\frac{155-14}{20}
Since \frac{155}{20} and \frac{14}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{141}{20}
Subtract 14 from 155 to get 141.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}