Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

81=36-16x^{2}
Calculate 9 to the power of 2 and get 81.
36-16x^{2}=81
Swap sides so that all variable terms are on the left hand side.
-16x^{2}=81-36
Subtract 36 from both sides.
-16x^{2}=45
Subtract 36 from 81 to get 45.
x^{2}=-\frac{45}{16}
Divide both sides by -16.
x=\frac{3\sqrt{5}i}{4} x=-\frac{3\sqrt{5}i}{4}
The equation is now solved.
81=36-16x^{2}
Calculate 9 to the power of 2 and get 81.
36-16x^{2}=81
Swap sides so that all variable terms are on the left hand side.
36-16x^{2}-81=0
Subtract 81 from both sides.
-45-16x^{2}=0
Subtract 81 from 36 to get -45.
-16x^{2}-45=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-16\right)\left(-45\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 0 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-16\right)\left(-45\right)}}{2\left(-16\right)}
Square 0.
x=\frac{0±\sqrt{64\left(-45\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{0±\sqrt{-2880}}{2\left(-16\right)}
Multiply 64 times -45.
x=\frac{0±24\sqrt{5}i}{2\left(-16\right)}
Take the square root of -2880.
x=\frac{0±24\sqrt{5}i}{-32}
Multiply 2 times -16.
x=-\frac{3\sqrt{5}i}{4}
Now solve the equation x=\frac{0±24\sqrt{5}i}{-32} when ± is plus.
x=\frac{3\sqrt{5}i}{4}
Now solve the equation x=\frac{0±24\sqrt{5}i}{-32} when ± is minus.
x=-\frac{3\sqrt{5}i}{4} x=\frac{3\sqrt{5}i}{4}
The equation is now solved.