Solve for x
x=5
x=8
Graph
Share
Copied to clipboard
49+x^{2}-13x=9
Swap sides so that all variable terms are on the left hand side.
49+x^{2}-13x-9=0
Subtract 9 from both sides.
40+x^{2}-13x=0
Subtract 9 from 49 to get 40.
x^{2}-13x+40=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-13 ab=40
To solve the equation, factor x^{2}-13x+40 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-40 -2,-20 -4,-10 -5,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 40.
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
Calculate the sum for each pair.
a=-8 b=-5
The solution is the pair that gives sum -13.
\left(x-8\right)\left(x-5\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=8 x=5
To find equation solutions, solve x-8=0 and x-5=0.
49+x^{2}-13x=9
Swap sides so that all variable terms are on the left hand side.
49+x^{2}-13x-9=0
Subtract 9 from both sides.
40+x^{2}-13x=0
Subtract 9 from 49 to get 40.
x^{2}-13x+40=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-13 ab=1\times 40=40
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+40. To find a and b, set up a system to be solved.
-1,-40 -2,-20 -4,-10 -5,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 40.
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
Calculate the sum for each pair.
a=-8 b=-5
The solution is the pair that gives sum -13.
\left(x^{2}-8x\right)+\left(-5x+40\right)
Rewrite x^{2}-13x+40 as \left(x^{2}-8x\right)+\left(-5x+40\right).
x\left(x-8\right)-5\left(x-8\right)
Factor out x in the first and -5 in the second group.
\left(x-8\right)\left(x-5\right)
Factor out common term x-8 by using distributive property.
x=8 x=5
To find equation solutions, solve x-8=0 and x-5=0.
49+x^{2}-13x=9
Swap sides so that all variable terms are on the left hand side.
49+x^{2}-13x-9=0
Subtract 9 from both sides.
40+x^{2}-13x=0
Subtract 9 from 49 to get 40.
x^{2}-13x+40=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 40}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -13 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 40}}{2}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-160}}{2}
Multiply -4 times 40.
x=\frac{-\left(-13\right)±\sqrt{9}}{2}
Add 169 to -160.
x=\frac{-\left(-13\right)±3}{2}
Take the square root of 9.
x=\frac{13±3}{2}
The opposite of -13 is 13.
x=\frac{16}{2}
Now solve the equation x=\frac{13±3}{2} when ± is plus. Add 13 to 3.
x=8
Divide 16 by 2.
x=\frac{10}{2}
Now solve the equation x=\frac{13±3}{2} when ± is minus. Subtract 3 from 13.
x=5
Divide 10 by 2.
x=8 x=5
The equation is now solved.
49+x^{2}-13x=9
Swap sides so that all variable terms are on the left hand side.
x^{2}-13x=9-49
Subtract 49 from both sides.
x^{2}-13x=-40
Subtract 49 from 9 to get -40.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-40+\left(-\frac{13}{2}\right)^{2}
Divide -13, the coefficient of the x term, by 2 to get -\frac{13}{2}. Then add the square of -\frac{13}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-13x+\frac{169}{4}=-40+\frac{169}{4}
Square -\frac{13}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-13x+\frac{169}{4}=\frac{9}{4}
Add -40 to \frac{169}{4}.
\left(x-\frac{13}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}-13x+\frac{169}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{13}{2}=\frac{3}{2} x-\frac{13}{2}=-\frac{3}{2}
Simplify.
x=8 x=5
Add \frac{13}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}