Solve for u
u=-\frac{x}{6}+27
Solve for x
x=162-6u
Graph
Share
Copied to clipboard
9=3u+\frac{1}{2}x-8\times 9
Calculate 3 to the power of 2 and get 9.
9=3u+\frac{1}{2}x-72
Multiply 8 and 9 to get 72.
3u+\frac{1}{2}x-72=9
Swap sides so that all variable terms are on the left hand side.
3u-72=9-\frac{1}{2}x
Subtract \frac{1}{2}x from both sides.
3u=9-\frac{1}{2}x+72
Add 72 to both sides.
3u=81-\frac{1}{2}x
Add 9 and 72 to get 81.
3u=-\frac{x}{2}+81
The equation is in standard form.
\frac{3u}{3}=\frac{-\frac{x}{2}+81}{3}
Divide both sides by 3.
u=\frac{-\frac{x}{2}+81}{3}
Dividing by 3 undoes the multiplication by 3.
u=-\frac{x}{6}+27
Divide 81-\frac{x}{2} by 3.
9=3u+\frac{1}{2}x-8\times 9
Calculate 3 to the power of 2 and get 9.
9=3u+\frac{1}{2}x-72
Multiply 8 and 9 to get 72.
3u+\frac{1}{2}x-72=9
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x-72=9-3u
Subtract 3u from both sides.
\frac{1}{2}x=9-3u+72
Add 72 to both sides.
\frac{1}{2}x=81-3u
Add 9 and 72 to get 81.
\frac{\frac{1}{2}x}{\frac{1}{2}}=\frac{81-3u}{\frac{1}{2}}
Multiply both sides by 2.
x=\frac{81-3u}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x=162-6u
Divide 81-3u by \frac{1}{2} by multiplying 81-3u by the reciprocal of \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}