Solve for a_1
a_{1}=-\frac{a_{2}b}{b-9a_{2}}
a_{2}\neq 0\text{ and }b\neq 0\text{ and }b\neq 9a_{2}
Solve for a_2
a_{2}=-\frac{a_{1}b}{b-9a_{1}}
a_{1}\neq 0\text{ and }b\neq 0\text{ and }b\neq 9a_{1}
Share
Copied to clipboard
9a_{1}a_{2}=a_{2}b+a_{1}b
Variable a_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a_{1}a_{2}, the least common multiple of a_{1},a_{2}.
9a_{1}a_{2}-a_{1}b=a_{2}b
Subtract a_{1}b from both sides.
\left(9a_{2}-b\right)a_{1}=a_{2}b
Combine all terms containing a_{1}.
\frac{\left(9a_{2}-b\right)a_{1}}{9a_{2}-b}=\frac{a_{2}b}{9a_{2}-b}
Divide both sides by 9a_{2}-b.
a_{1}=\frac{a_{2}b}{9a_{2}-b}
Dividing by 9a_{2}-b undoes the multiplication by 9a_{2}-b.
a_{1}=\frac{a_{2}b}{9a_{2}-b}\text{, }a_{1}\neq 0
Variable a_{1} cannot be equal to 0.
9a_{1}a_{2}=a_{2}b+a_{1}b
Variable a_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a_{1}a_{2}, the least common multiple of a_{1},a_{2}.
9a_{1}a_{2}-a_{2}b=a_{1}b
Subtract a_{2}b from both sides.
\left(9a_{1}-b\right)a_{2}=a_{1}b
Combine all terms containing a_{2}.
\frac{\left(9a_{1}-b\right)a_{2}}{9a_{1}-b}=\frac{a_{1}b}{9a_{1}-b}
Divide both sides by 9a_{1}-b.
a_{2}=\frac{a_{1}b}{9a_{1}-b}
Dividing by 9a_{1}-b undoes the multiplication by 9a_{1}-b.
a_{2}=\frac{a_{1}b}{9a_{1}-b}\text{, }a_{2}\neq 0
Variable a_{2} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}