Solve for x
x = \frac{\sqrt{91} + 1}{3} \approx 3.513130671
x=\frac{1-\sqrt{91}}{3}\approx -2.846464005
Graph
Share
Copied to clipboard
\frac{3}{2}x^{2}-x=15
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{3}{2}x^{2}-x-15=15-15
Subtract 15 from both sides of the equation.
\frac{3}{2}x^{2}-x-15=0
Subtracting 15 from itself leaves 0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{3}{2}\left(-15\right)}}{2\times \frac{3}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{2} for a, -1 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-6\left(-15\right)}}{2\times \frac{3}{2}}
Multiply -4 times \frac{3}{2}.
x=\frac{-\left(-1\right)±\sqrt{1+90}}{2\times \frac{3}{2}}
Multiply -6 times -15.
x=\frac{-\left(-1\right)±\sqrt{91}}{2\times \frac{3}{2}}
Add 1 to 90.
x=\frac{1±\sqrt{91}}{2\times \frac{3}{2}}
The opposite of -1 is 1.
x=\frac{1±\sqrt{91}}{3}
Multiply 2 times \frac{3}{2}.
x=\frac{\sqrt{91}+1}{3}
Now solve the equation x=\frac{1±\sqrt{91}}{3} when ± is plus. Add 1 to \sqrt{91}.
x=\frac{1-\sqrt{91}}{3}
Now solve the equation x=\frac{1±\sqrt{91}}{3} when ± is minus. Subtract \sqrt{91} from 1.
x=\frac{\sqrt{91}+1}{3} x=\frac{1-\sqrt{91}}{3}
The equation is now solved.
\frac{3}{2}x^{2}-x=15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{3}{2}x^{2}-x}{\frac{3}{2}}=\frac{15}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{1}{\frac{3}{2}}\right)x=\frac{15}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
x^{2}-\frac{2}{3}x=\frac{15}{\frac{3}{2}}
Divide -1 by \frac{3}{2} by multiplying -1 by the reciprocal of \frac{3}{2}.
x^{2}-\frac{2}{3}x=10
Divide 15 by \frac{3}{2} by multiplying 15 by the reciprocal of \frac{3}{2}.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=10+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=10+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{91}{9}
Add 10 to \frac{1}{9}.
\left(x-\frac{1}{3}\right)^{2}=\frac{91}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{91}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{\sqrt{91}}{3} x-\frac{1}{3}=-\frac{\sqrt{91}}{3}
Simplify.
x=\frac{\sqrt{91}+1}{3} x=\frac{1-\sqrt{91}}{3}
Add \frac{1}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}