9 : 45 + 8.30 = \text { Hrs } 4
Solve for H
H=\frac{17}{8rs}
s\neq 0\text{ and }r\neq 0
Solve for r
r=\frac{17}{8Hs}
s\neq 0\text{ and }H\neq 0
Share
Copied to clipboard
\frac{1}{5}+8.3=Hrs\times 4
Reduce the fraction \frac{9}{45} to lowest terms by extracting and canceling out 9.
\frac{17}{2}=Hrs\times 4
Add \frac{1}{5} and 8.3 to get \frac{17}{2}.
Hrs\times 4=\frac{17}{2}
Swap sides so that all variable terms are on the left hand side.
4rsH=\frac{17}{2}
The equation is in standard form.
\frac{4rsH}{4rs}=\frac{\frac{17}{2}}{4rs}
Divide both sides by 4rs.
H=\frac{\frac{17}{2}}{4rs}
Dividing by 4rs undoes the multiplication by 4rs.
H=\frac{17}{8rs}
Divide \frac{17}{2} by 4rs.
\frac{1}{5}+8.3=Hrs\times 4
Reduce the fraction \frac{9}{45} to lowest terms by extracting and canceling out 9.
\frac{17}{2}=Hrs\times 4
Add \frac{1}{5} and 8.3 to get \frac{17}{2}.
Hrs\times 4=\frac{17}{2}
Swap sides so that all variable terms are on the left hand side.
4Hsr=\frac{17}{2}
The equation is in standard form.
\frac{4Hsr}{4Hs}=\frac{\frac{17}{2}}{4Hs}
Divide both sides by 4Hs.
r=\frac{\frac{17}{2}}{4Hs}
Dividing by 4Hs undoes the multiplication by 4Hs.
r=\frac{17}{8Hs}
Divide \frac{17}{2} by 4Hs.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}